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Abstract

Investors in option markets perceive the financial sector to be too-systemic-to-fail. They
price in a substantial collective government bailout guarantee, which puts a floor on the value
of the financial sector as a whole, but not on its individual members. The guarantee makes put
options on the financial sector index cheap relative to put options on its member banks. The
basket-index put spread rises fourfold from 0.8 cents per dollar insured before the financial
crisis to 3.8 cents during the crisis for deep out-of-the-money options. The spread peaks at
12 cents per dollar, or 70% of the value of the index put. The rise in the put spread cannot
be attributed to an increase in idiosyncratic risk because the correlation of stock returns
increased during the crisis. Sector-wide tail risk, partially absorbed by the government’s
collective guarantee for the financial sector, lowers the index put prices but not the individual
put prices, and hence can explain the basket-index spread. A structural model quantitatively
matches these facts and indicates that as much as half of the value of the financial sector
during the crisis. The model solves the problem of how to measure systemic risk in a world

where the government distorts market prices.



1 Introduction

As the world recovers from the financial crisis and legislation is passed to prevent a repeat of the
events that unfolded between mid-2007 and mid-2009, observers fear that one problem has not gone
away: too-systemic-to-fail. The head of the Troubled Asset Relief Program program Neil Barofsky
testified before the U.S. Congress that the financial sector has become even more concentrated than
before the crisis and that markets continue to perceive financial firms as too systemically risky to
be let go in a crisis. In this paper, we argue that options markets are uniquely suited to gauge the
market’s perception of too-systemic-to-fail government guarantees. We find that investors price in

substantial government bailout guarantees.

Specifically, we document that during the financial crisis, there was markedly less aggregate tail
risk priced in put options on the financial sector index than in the individual put option prices on
all the stocks that make up that financial sector index. This leakage of aggregate tail risk at the
sector level is consistent with investors’ perception of a strong collective bailout guarantee for the
financial sector. By putting a floor under the equity value of the financial sector, the government
eliminates part of the sector-wide tail risk. But it does not eliminate idiosyncratic tail risk. That
explains why out-of-the-money index put options were cheap during the crisis, relative to the
basket of individual put options. We use the difference between the cost of a basket of options and
an index option to estimate the size of the guarantee extended to the financial sector during the
crisis. The dollar value of the collective equity bailout guarantee, inferred from the basket-index
spread for one-year out-the-money put options, is plotted in figure 1 against the market cap of the
financials. It peaks at $139 billion on October 13, 2008, implying that the government provided
guarantees worth 10.5% of the financial index’s market value that day. We argue below that this
is a conservative estimate and that the collective bailout guarantee accounts for as much as half of

the market value of the financial sector.
Absent bailout guarantees, the high basket-index spread in the financial sector is puzzling.

Standard option pricing logic suggests that the dramatic increase in the correlation of stock returns

during the crisis should raise the price of the out-of-the-money index options relative to the price



of a basket of individual options with the same moneyness. This is exactly what we find when we
focus on index call options for all sectors of the economy. In contrast, the cost of the basket of
individual stock puts soars relative to the cost of the index puts for the financial sector. Moreover,
this increase in the basket-index put spread is much larger for the financial sector than for any
other sector index. The basket-index spread for out-of-the-money put options on the financial
sector index reaches a maximum of 12 cents per dollar insured in March 2009, or 80% of the cost
of the index put. To generate the increase in the basket-index spread for out-of-the-money put
options, the standard option model would have to assume a large increase in idiosyncratic tail risk,

which would counter-factually lead to a decrease in stock return correlations.

A collective bailout guarantee for the financial sector can explain these facts. Intuitively, the
government’s collective bailout guarantee truncates the distribution of the total equity value of the
financial sector, but not that of the individual stocks in the sector. Consider an out-of-the-money
index put option with a strike price below the bailout bound. An increase in the volatility of
aggregate shocks will increase the correlation among stock returns, it will increase the put prices
of individual stocks, but it does not affect the index put price. Only a model with a bailout
guarantee can simultaneously generate a high put spread and an increase in correlation between
stocks. Furthermore, a careful read of the evolution of the put spread for the financial index
lend support to the presence of a collective bailout guarantee. Each large, adverse shock to the
financial sector during our sample increases the basket-index spread (e.g., the Bear Stearns rescue,
the failure of Lehman Brothers). These same shocks simultaneously lower the ratio of implied

volatility to realized volatility for out-of-the-money put index options.

We use a calibrated dynamic asset pricing model with rare events to study the impact of
sector-wide bailout guarantees on individual and index option prices. To model the asset pricing
impact of financial crises, we use a version of the Barro-Rietz asset pricing model with a time-
varying probability of rare disasters and with two sources of priced risk: normal risk and financial
disaster risk. In the model, the collective bailout bounds the aggregate equity loss rate for the

financial sector in a disaster, but not for individual firms in the sector. We model the financial
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crisis as an increased probability of a financial disaster. First, we show that this (state-of-the-art)
structural model without bailout guarantees cannot explain the joint stock and option moments
for the financial sector, discussed above. Second, we show that a model with bailout guarantee can.
Third, we use the structural parameters of the model to infer the effect of the bailout option on
financial firms’ expected return, their cost of capital, and the overall dollar size of the government

subsidy implied by the bailout guarantee.

We investigate and rule out three other potential alternative explanations: mispricing (viola-
tions of the law of one price) during the crisis, liquidity differences across index and individual op-
tions, put and call options, and financial and non-financial sector options, and a smaller price of cor-
relation risk (in absolute value) during the crisis. As pointed out by Driessen, Maenhout, and Vilkov
(2009), index options provide a hedge against increases in correlations, which constitute a dete-
rioration in the investment opportunity set, because their prices rise when correlations increase.
Individual options do not have this feature. The observed pattern would then imply that the
average investor was less eager to hedge against such deteriorations during the crisis. This is im-
plausible. Moreover, a decrease in the correlation risk premium would also increase call spreads
in the financial sector, which is counter-factual. More plausibly, the price of correlation risk in-
creased (in absolute value) during the crisis, and leads our constant correlation risk price model to

understate the true bailout guarantee.

Our paper contributes to the growing literature on tail risk measurement and how this risk is
priced. In recent work, Kelly (2009) uses the cross-section of stock returns to construct a measure
of tail risk. Backus, Chernov, and Martin (2011) use option prices to make inference about the
size and frequency of consumption disasters. Our work uses the relative valuation of sector and
stock-specific option prices to distinguish between firm-specific and aggregate tail risk. We find
that there was less aggregate tail risk priced in index option markets during the crisis than there

would have been absent a bailout option.

Our work contributes to the important task of measuring systemic risk in the financial sector

(for example, see Acharya, Pedersen, Philippon, and Richardson, 2010; Adrian and Brunnermeier,
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2010, for novel ways of measuring systemic risk). Our results provides a cautionary note on the
difficulties of systemic risk measurement when governments distort market prices by providing
bailout guarantees. The basket-index spread for out-of-the-money put options would be natural
measure of systemic risk: the smaller the basket-index spread in a sector, the larger the amount of
systemic risk in that sector. However, in sectors that benefit from a collective bailout guarantee,
an increase in the basket-index spread occurs when systemic risk peaks and the collective bailout
guarantee kicks in. This is what we observed in the financial sector, and to a lesser extent, in the
broader economy, during the 2007-2009 crisis. A structural model like ours is needed to undo the

effect of the government’s distortions on measures of systemic risk.

Other studies have measured the size of guarantees on the cost of bank credit. Recently, Giglio
(2010) and Longstaff, Arora, and Gandhi (2009) infer joint default probabilities for banks from the
pricing of counter-party risk in credit default swap markets. We focus exclusively on the equity
side, and we find evidence of a large collective equity bailout guarantee in the financial sector.
Consistent with our findings, Gandhi and Lustig (2010) quantify the effect of too-big-too fail on
the cost of equity capital of large banks by analyzing stock returns on size-sorted bank portfolios.
They find that large banks yield risk-adjusted returns that are 500 basis points per annum lower
than those of the smallest banks, and they attribute this difference to the implicit guarantee for
large banks. In a seminal paper on this topic, O’Hara and Shaw (1990) document large positive
wealth effects for shareholders of banks who were declared too big too fail by the Comptroller of
the Currency in 1984, and negative wealth effects for those banks that were not included.! Since
we find strong evidence of ex ante subsidies to shareholders, this implies that there are even larger

subsidies to other creditors of large banks.
The rest of the paper is organized as follows. After defining index and basket put and call
spreads and their relationship in Section 2, we document their empirical behavior in Section 3

in the financial sector and in all other non-financial sectors. Section 4 finds supporting evidence

LA number of events have been important in creating and sustaining the too-big-too fail perception in the market.
Among these are the FDIC’s intervention to prevent the failure of Continental Illinois National Bank in 1984, Federal
Deposit Insurance Corporation Improvement Act of 1991, and the Federal Reserve’s intervention in 1998 to save
LTCM. While the FDICIA limits the protection of creditors, it provides a systemic risk exception.



for our collective bailout hypothesis in the events in the 2007-2009 crisis. Section 5 develops a
structural asset pricing model which features a time-varying probability of financial disasters. A
technical contribution of the paper is to derive option prices in the presence of a bailout option.
Section 6 calibrates the model and shows that it is able to account for the observed option and
return data, but only when a bailout guarantee is present. Section 7 studies and rules out three
potential alternative explanations: mispricing, liquidity, and time-varying price of correlation risk.

The last section concludes.

2 Cost of Basket of Options and Index Option Prices

We focus on a traded sector indices ¢ comprised of different stocks j. Index denotes the level of

the index as traded. The dollar cost of the index, i.e., the total market cap of all the firms in the

index, is given by Index® = Zjvzl 5,5, where IN; is the number of different stocks that constitute
index 7 and s; denotes the number of shares of stock j in the index i. We use Put?®*< to denote
the price of a basket of put options on all stocks: Putb®s*et = Z;VZI sjPut;. We use Puti" to
denote the price of a put option on the sector index. Similarly, we use Call’***¢* to denote the
price of a basket of call options on all stocks in the sector index and Calli"* to denote the price

of a call option on the index. We study two different ways of comparing basket and index options.

Delta-matched Basket The first approach ensures that the index and the individual options
have the same option A.? First, we choose strike prices K;,j = 1,2,..., N; for individual stocks
to match the targeted A level. Second, we choose the strike price K for the index to match that

same A. Third, taking K from the previous step, we choose K4%$ such that the total amount

2The Delta of an option is the derivative of the option price with respect to the underlying asset price. While
put options have negative Deltas, we use the convention of taking the absolute value, so that all delta’s are positive.
Delta measures the moneyness of an option, with low values such as 20 indicating out-of-the-money options and
high values such as 80 indicating in-the-money options. At the money options have a Delta of 50.
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insured by the basket and the index option strategies is the same:

N;
Kmdex$ — scaling x K = Z s K.
j=1
The advantage of this approach is that both the index and basket options have the same moneyness.
The disadvantage, as we explain below, is that no-arbitrage does nut put bounds on the basket-

index spread.

Strike-matched Basket The second approach ensures that the strike price on the index matches
the share-weighted strike of the basket. First, we choose all the strike prices K;,5 = 1,2,...,N;
for individual stocks that are part of the index to match a certain A. Second, we choose the strike
price of the index options K9®$ (in billions) such that the strike price of the index (in dollars)

equals the share-weighted sum of the individual strike prices:

N;

Kinde:p,$ — Z SjKj-

J=1

Third, we choose a strike price for the index K such that the total dollar cost of insurance equals
Kinde:c,$:
Index®

Kindex,$ — K x )
Index

The advantage of this approach is that the cost of the basket has to exceed the cost of the index
option by no arbitrage, which bounds the basket-index spread below from zero. The disadvantages
are that the moneyness and A of the index option can be substantially different from the moneyness

of the basket options and that this approach is computationally more involved.?

No-Arbitrage Basket-Index Relationship We compare the cost of the index option and the

basket of options under the second approach. At expiration, the payoff of the basket of options is:

3Since we are on a discrete grid in the data for A’s, we occasionally jump back and forth between deltas that
satisfy this on consecutive days. To avoid oscillation in the basket price, we determine the best basket A on each
day and for each sector and redo the basket price calculation for that delta, which is set equal to the mode of
day-by-day delta series.



Putlshet = ZN:1 symaz(K;— Sy ;,0). We can compare this payoff to the payoff from the index put
option: Putfd® = max(K indez,$ _ Zjv’l sjS7.;,0), where the strike price in dollars of the index is

the weighted strike price of the underlying stocks in the basket K™mde®$ — ZNl s K.

Proposition 1. The cost of the basket of put options has to exceed the cost of the index put option:

Pu tbasket > Pu tmdem' (1)

Proof. The payoffs at maturity satisfy the following inequality: Zjvz’l s;max(K; — Sp.,0) >

7j’
max(Kmdew$ — Z;VZI sjSr ;,0), First note that, for each j, s;maz(K; — Sy ;,0) > s;(K; — Sp ).
This implies that ZNzl symax(K; — Sp;,0) > KinderS — Zjvzl s;Sy ;. However, this also means
that Z; L simaz(K; — Sp;,0) > maz(Kmiens — ZN’ sjSp4,0), because the left hand side is

non-negative. 0

To get some intuition, note the following. If the payoff from the basket of put option is zero,

then the index put option has a zero payoff too:
P tbasket — 0 = P tznde:p . 0’

because
N;

Kj— Sp; <0 for all j = K™% =3 5,9, < 0.
j=1

This follows from the definition of K*4*$ However, the reverse is clearly not true.

N;
KmerS — N " 5380, < 0.9 K; — Sy, < 0 for all j.
j=1
Consider out-of-the money put options. The basket of put options provides insurance against
states of the world in which there are large declines in the price of any individual stock, including

declines that affect many stocks simultaneously. The index put option only provides insurance

in those states of the world that prompt common declines in stock prices. Hence the difference



Putlj’fffket — Put%le"” between these two put prices is the cost of insurance against large declines in
individual stock prices but not in the overall index. Hence, the basket-index spread is non-negative.

The same inequality applies to the basket of calls and the call on the index.*

Cost Per Dollar Insured To be able to compare prices across baskets, we define the cost per

dollar insured (cdi) as the ratio of the price of the basket/index option divided by its strike price:

basket Pytbasket ind Pytindex .
Put)istet = —x+—— and Put" = —x~——. From equation (1), we know that the cost of basket
) s K ’ Z toss K
23_1 S8 j=15i1%;
insurance exceeds the cost of index insurance: Putb%ket > Pytindes if we construct the index strike

to match the share-weighted strike price. We define the basket-index put spread per dollar insured

. spread __ basket index basket spread
as: Put; = Putgi — Putyy s Callg’® and Call; are defined analogously.

Basket-index Spread The APutif”“ead is the difference in the basket-index spread for financials

(Put?**?) and the entire S&P 500 (Put %)
APut? e = Pyt — putihyes?,

ACall$™*? is defined analogously. We sometimes refer to the basket-index put (call) spread simply

as the put (call) spread.

3 The Basket-Index Spread in the Data

This section documents our main stylized facts.

3.1 Data

We use exchange-traded options on the nine iShares sector exchange-traded funds (ETF) and on
the S&P500 ETF. The CBOE trades options on ETFs. As ETFs trade like stock, options on these

products are similar to options on individual stock. Options on ETFs are physically settled and

4This property is unique to equity options. In the case of credit default swaps, the cost of a basket of credit
default swaps has to be equal to the CDX index to rule out arbitrage opportunities.
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have an American-style exercise feature. The nine sector ETFs have the nice feature that they
have no overlap and collectively cover the entire S&P500. Appendix A.1 contains more details and
lists the top 40 holdings in the financial sector ETF. We also use individual option data for all
500 stocks in the S&P500. The OptionMetrics Volatility Surface provides European put and call
option prices that have been interpolated over a grid of time-to- expiration and option delta, and
that perform a standard adjustment to account for the American option feature of the raw option
data. The European style of the resulting prices allows us to compare them to the European-style
options we compute in our structural model later. Interpolated prices allow us to hold maturity and
moneyness constant over time and across underlyings. The constant maturity options are available
at various intervals between 30 and 730 days and at grid points for (absolute) A ranging from 20 to
80. We use CRSP for the returns, the market capitalization, and the number of outstanding shares
for the sector ETFs and the individual stocks. Our database changes as the index composition
of the S&P500 changes. We focus primarily on options with 365 days to maturity and on A
of 20. We obtain implied volatility data from the interpolated implied volatility surface data of
OptionMetrics. We calculate realized volatility of index and individual stock returns, as well as

correlations between individual stock returns from the CRSP return data.

3.2 Delta-matched Basket

This section describes the moments in the data for the basket-index option spread. We find that
out-of-the-money put options on the index were cheap during the financial crisis, relative to the
individual stock options, while out-of-the-money index calls were relatively expensive. This pattern
is much more pronounced for the financial sector than for the other non-financial sectors.

Panel I in Table I provides summary statistics for the basket-index spread per dollar insured,
for the approach where we fix the A for the index and the individual options at 20. Columns (1)-(2)
report results for the financial sector. Columns (3)-(4) report results for the non-financial sector.
Columns (5)-(6) report the differences in the spread between the financial and non-financial sector.

All results are reported in cents per dollar. An increase in the spread between the basket and the
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index means index options are cheaper relative to the individual options. We report statistics for
three samples: the entire sample (top panel, January 2003 until June 2009), the pre-crisis sample
(middle panel, January 2003 until July 2007), and the crisis sample (bottom panel, August 2007
until June 2009).

We start by discussing the full sample. Over the entire sample, the mean spread for out-of-
the-money (OTM) puts is 1.69 cents per dollar in the financial sector, compared to 1.10 cents per
dollar in the non-financial sector. The same numbers for OTM calls are an order of magnitude
smaller: 0.23 cents for financials and 0.20 cents for non-financials (value-weighted average across
all non-financial sectors). The standard deviation of the basket-index spread over time is 1.89
cents for puts compared to only 0.16 cents for calls in the financial sector. Hence, there is much
more volatility in the call-based spreads. The largest recorded put-based basket-index spread in
our sample for financials is 12.45 cents per dollar. This spread was recorded in March 6, 2009
and represents 70% of the cost of the index option. On that same day, the difference between the
spread for financials and non-financials peaks at 9.07 cents per dollar insured. The largest recorded
put-based basket-index spread for non-financials in our sample is 4.1 cents per dollar on November
21 2008. The largest basket-index spread for calls is only 0.49 cents for financials and 0.36 cents
for non-financials. Both are an order of magnitude smaller for puts, but the financial sector’s call

spread is still substantially above that of the non-financial sectors.

The bottom half of Panel I focusses exclusively on the crisis subsample. The mean spread backed
out from OTM puts is 3.79 cents per dollar for financials and 1.57 for non-financials. Hence, while
there is an across-the-board increase in the put spread from pre-crisis to crisis, the increase is much
more pronounced for financials (4.7 times versus 1.7 times). The put spread volatility increases in
the crisis, especially for financials: from 0.20 pre-crisis to 2.39 during the crisis. For non-financials
the increase is much less dramatic from 0.44 to 0.90. A very different pattern emerges for OTM
call spreads. They are substantially lower in the crisis than in the pre-crisis period. The crisis call
spread is 0.06 cents for financials and 0.11 cents for non-financials. The volatility increases only

modestly from 0.06 to 0.17 (0.05 to 0.10) for financials (non-financials).
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Figure 2 plots the cost of the basket of put options per dollar insured (full line), the cost of
the financial sector put index (dashed line), and their difference, the basket-index spread (dotted
line) for the entire sample. Before the crisis, the basket-index spread is essentially constant and
very small, less than 1 cent per dollar. During the crisis, the index option gradually becomes
cheaper relative to the basket of put options and the put spread increases. The cost of the basket
occasionally exceeds 30 cents while the cost of the index put rarely rises above 20 cents per dollar.
At the start of 2009, the difference exceeds 12 cents per 1$ of insurance. The basket index spread
also becomes more volatile. The standard deviation of the spread is 2.39 cents compared to 0.20
pre-crisis. By fixing A as the crisis unfolds, we are looking at put contracts with lower strike
prices during the crisis, and hence at options with lower prices. This of course tends to lower the
basket-index spreads (in cents per dollar insured). If we were to fix the K’s instead of A, we would
obtain larger increases in the basket-index spreads. No other non-financial sector has such a large

increase in the put spread during the crisis.

Figure 3 plots the cost per dollar insured of basket and index call options, as well as the call
spread. During the crisis, index options become more expensive relative to the basket of call
options. In addition, the volatility of the basket-index spread decreases. At some point, the call
spread becomes negative (-0.44 cents at the lowest point). Recall that the zero lower bound for the
spread only holds for strike-matched and not Delta-matched options, so that this negative number

does not present a puzzle. We find essentially the same results for call spreads in all other sectors.

In Figure 4, we compare the put spread of financials and non-financials over time (the dotted
lines from the previous two figures). For non-financials (solid line), the basket-index spread remains
very low until the Fall of 2008. On the other hand, for financials (dashed line), the put spread
starts to widen in the summer of 2007, spikes in March 2008 (the collapse of Bear Stearns), and
then spikes even more after the Freddie Mac and Fannie Mae bailouts and the Lehman Brothers
bankruptcy in September 2008. After a decline in November and December of 2008, the basket-
index spread peaks at 12 cents per dollar in March 2009. The dotted line plots the difference

in put spread between the financial sector and non-financial sectors. This difference is positive
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throughout the crisis, except for a few days in November of 2008. It increase from the summer of
2007 to October 2008, falls until the end of 2008, and increases dramatically from January to March
2009. The next section provides a detailed interpretation of this pattern based on crisis-related

government announcements.

3.3 Share-Weighted-Strike-matched Baskets

Panel II in Table I reports results for our second approach to compare basket-index spreads: the
index strike matches the share-weighted strike price of the basket. In this case, no-arbitrage implies
that the basket-index spreads be non-negative. Essentially, we see the same pattern as with the
delta-matching approach. The correlation between these two measures is 0.995. However, the
basket-index spreads are larger when we match the share-weighted strike price. The reason is that
the higher volatility of individual stock returns leads to a lower (higher) strike price for OTM put
(call) options when we match Deltas. Put differently, individual options in the second approach
have higher Deltas than index options, which increases spreads.

The average put spread during the crisis is 5.85 cents per dollar for financials (compared to
3.79 cents in Panel I), and the volatility is 3.01 (compared to 2.39). The maximum spread is now
15.87 cents per dollar insured (compared to 12.46). This number represents 89% of the cost of
the index put on March 6, 2009 (compared to 70%). On that same day, the difference between
the put spread for financials and non-financials peaks at 10.17 cents per dollar. The maximum
spread for calls is only 1.27 cents per dollar. The minimums reported are all positive, which means
the no-arbitrage constraint is satisfied. Since our results do not seem sensitive to how we perform
the basket-index comparison, we report only the A-matched basket-index spread results in the

remainder of the paper.

3.4 The Effect of Time To Maturity

Panel III of table I studies the cost of insurance when the time to maturity is 30 days instead of

365 days. As we show later, these shorter maturity option contracts are more liquid. Naturally,
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all basket-index spreads are smaller for shorter-dated options, because the cost per dollar insured
increases with the time to maturity. Yet, we observe the same patterns as in Panel I. We limit our

discussion to Panel III; the share-weighted-strike results in Panel IV are very similar.

Starting with the basket-index spread for puts on financials, we find an average of 0.61 cents
per dollar in the crisis, up from 0.17 cents pre-crisis. This represents an increase by a factor of 3.7,
only slightly lower than the 4.7 factor with TT'M = 365. Per unit of time (relative to the ratio of
the square root of maturities), the put spread increase during the crisis is larger for TTM = 30
options than for TTM = 365 options. The 30 day spread reaches a maximum of 2.45 cents per
dollar or 52% of the cost of the index option on that day. The call spread for financials decreases
from an average of 0.15 cents pre-crisis to an average of 0.10 cents during the crisis, a slower rate
than for longer-dated options. For non-financials, there is an increase in the put spread by a factor
of 1.8 (from 0.13 before the crisis to 0.23 cents during the crisis). This is similar to the increase
in long-dated puts of 1.8, and larger when taking into account the shorter time interval. The call
spread actually increases during the crisis for shorter-dated options (from 0.11 to 0.14 cents), while
it falls for longer-dated options (from 0.25 to 0.11 cents). This is the only qualitative feature of

the data for which maturity matters.

3.5 The Effect of Moneyness

Table II reports the cost of insurance on basket minus index for different moneyness (|A]). It
follows the format of Table I, and their Panel I is identical. While option prices are naturally
higher when options are closer to being in-the-money, it turns out that spreads also increase in
size. However, the proportional increase in the basket-index spread from pre-crisis to crisis is much
larger for OTM put options than for at-the-money (ATM) puts.

Starting with financials, options with the lowest moneyness (A = 20) see the largest propor-
tional increase in put spread from pre-crisis to crisis. That factor is 4.7 for A = 20, 3.5 for A = 30,
3.0 for § = 40, and 2.5 for at-the-money options (A = 50). Similarly, the proportional decreases in

call spreads are larger for OTM than for ATM options. For non-financials, the put spread increases
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during the crisis are again much smaller and again decreasing in moneyness. The difference in the
put spread between financials and non-financials (reported in column 5) during the crisis increases
only marginally from 2.22 cents at |A = 20| to 2.37 cents per dollar at |A = 50|. Since ATM
option prices are obviously higher for high |A| options, the F-NF put spreads fare much larger
in percentage terms for OTM options. To make this point clear, Table III reports the percentage
spread, measured as the basket-index spread relative to the cost of the index option. For put op-
tions on financials, the percentage spread during the crisis is 37% for |A = 20| but only by 26% for
|A = 50|. Similarly, the maximum percentage put spread falls from 80.5% to 51.7% as moneyness
increases. For call options on financials, the largest percentage spreads are in the pre-crisis sample.
Finally, we only see large increases in the average percentage spreads for OTM put options with

|A = 20| on financials.

3.6 Correlation and Volatility

The crisis was characterized by a substantial increase in the correlation of individual stock returns.
Panel I of Tables V and VII reports the average pairwise correlations for financials and non-
financials, respectively, computed from daily return data. The correlation for the stocks in the
financial sector index is 51.3% on average over the entire sample. This number increased from
44.8% pre-crisis to 57.9% during the crisis. For non-financials, the correlations are lower. The
average correlation is 45.1%. This number increased from 33.6% pre-crisis to 57.1% in the crisis.
Figure 5 plots these correlations for financials and non-financials. The correlations for financials
are invariably higher. We argue below that the increase in correlations during the crisis is evidence
that points towards the collective bailout hypothesis.

Panel I of Tables V and VII also reports the realized volatility of individual and index returns
in financials and non-financials. Panel I of Tables IV and VI reports option-implied volatilities
in financials and non-financials. Over the entire sample, the implied volatility is 2.9 percentage
points higher than the realized volatility for financials. In the pre-crisis sample, this difference is

9.8 percentage points (21.7% versus 11.9%). However, in the crisis-sample, this difference shrinks
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to 4.7 percentage points (48.5% versus 43.8%). The ratio of the two falls from 1.82 to 1.11. In the
options literature, the difference between implied volatility and the expectation of realized volatility
is called the volatility risk premium. To the extent that the sample average of realized volatility
(measured over a long enough sample) is a good proxy of the average conditional expectation of
realized volatility, this is evidence that the variance risk premium in financials decreases during
the crisis. It is yet another important indication that index put options on the financial sector
are cheap during the crisis. In contrast to financials, the volatility risk premium barely decreases
for non-financials. The difference between implied volatility and average realized volatility is 9.5
percentage points in the pre-crisis sample compared to 9.1 percentage points during the crisis.
Similarly to puts, call options on financials indicate a large decrease in the volatility risk premium
from 3.0 percentage points to -6.0 percentage points in the crisis. The decrease is again smaller for
non-financials.

Figure 6 shows the difference between put-option-implied and realized volatility for financials
(dashed line) and non-financials (solid line). It clearly shows that implied volatility falls below
realized volatility during the crisis, and more so in the financial sector than in the non-financial
sector. For non-financials, the downward spike in this difference in September 2008 may simply arise
because the realization of a disaster leads to a spike in realized volatility. However, for financials,
implied volatility is persistently below realized volatility, consistent with our explanation that a

collective bailout guarantee makes financial sector put options artificially cheap.

4 Interpreting The Basket-Index Spread During the Crisis

In a financial disaster, the banking sector is insolvent because the sector’s asset value drops below
the value of all debt issued. Under the collective bailout hypothesis, the government bounds the
value of total losses to equity holders in a financial disaster. In principle, bailouts of bondholders
and other creditors do not preclude shareholder the value of equity being erased completely. In
practice, given the uncertainty about the resolution regime, especially for large financial institu-

tions, the collective bailout does put a lower bound on the value of equity in the financial sector. In
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the presence of a collective bailout guarantee, an increase in the probability of a financial disaster
increases the put basket-index spread because the cost of downside insurance for the entire sector
- which is supported by the government- increases by less than the cost of downside insurance for
all the stocks in the basket. If the guarantee is specific to the financial sector, we do not expect to
see the same pattern in other sectors. In this section, we study salient events during the financial

crisis of 2007-2009 from the perspective of our collective bailout hypothesis.

4.1 Financials

Phase I: Onset of the Crisis During the financial crisis, each major negative event rendered
index put options on the financials cheaper relative to the individual stock options. The dashed
line in Figure 7 plots the put spread for financials. The spread starts to go up in August 2007,
when the BNP Paribas hedge funds trigger a run in the asset-backed commercial paper market
and the financial crisis begins. The spread reaches a first peak of 3.7 cents per dollar on March 17,
2008 after the failure of Bear Stearns. The spread starts to climb again after the failure of Indy
Mac on July 11 and it reaches a second peak on July 15 when the Securities Exchange Commission
(SEC) issues an emergency order temporarily prohibiting naked short selling in the securities of
Fannie Mae, Freddie Mac, and primary dealers at commercial and investment banks. The third
major run-up in the spread is initiated by the failure of Lehman Brothers on September 15, 2008.
The model’s interpretation of these events is that each negative shock increases the probability of

a disaster. In the presence of a bailout, an increasing disaster probability increases the put spread.

Phase II: TARP On Sept 25, 2008, the day JP Morgan takes over Washington Mutual, the
spread for financials starts a steep increase from 4.1 cents to 8.8 cents on Oct 13. The crisis spreads
internationally. They key event is the passing of TARP legislation and its implementation. On
Oct 3, Congress passes and President Bush signs into law the Emergency Economic Stabilization
Act of 2008 (Public Law 110-343), which establishes the $700 billion Troubled Asset Relief Pro-
gram (TARP). On Oct 14, the U.S. Treasury Department announces the Troubled Asset Relief

Program (TARP) that will purchase capital in financial institutions under the authority of the
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Emergency Economic Stabilization Act of 2008. The U.S. Treasury will make available $250 bil-
lion of capital to U.S. financial institutions. This facility will allow banking organizations to apply
for a preferred stock investment by the U.S. Treasury. Nine large financial organizations announce
their intention to subscribe to the facility in an aggregate amount of $125 billion. Moreover, the
FDIC creates a new Temporary Liquidity Guarantee Program to guarantee the senior debt of all
FDIC-insured institutions and their holding companies, as well as deposits in non-interest-bearing
deposit transaction through June 30, 2009.

From the perspective of our model, market participants substantially revise up their probability
of a financial disaster in this period. TARP is essentially a collective bailout of the financial sector’s
equity holders. However, it occurs amidst massive losses in the stock market and initial uncertainty

about the exact mission of TARP, whose purpose was only clarified on October 14, 2008.

Phase III: Increased Bailout Uncertainty After October 15, 2008, the put spread stays high
but actually declines somewhat from 8.8 cents to 5-6 cents per dollar, and hovers there until the
end of January 2009. This period is one of heightened market volatility and uncertainty about
the government’s commitment to a bailout. On November 9, president Bush speaks out against
too much government involvement in resolving the crisis. A November 13 Treasury announcement
that TARP would not be used to buy troubled assets from large banks had a negative impact on
their share prices. On November 19 and 20, the Dow Jones fell by 870 points to its lowest level
in six years (now matching the 50% drop in stocks of the Great Depression). Citibank, which is
thought to have $20 billion in toxic assets loses 26% of its market value and other large banks lose
around 10%. The decline in the financial sector put spread during this period is consistent with a

lower perceived bailout option.

Phase IV: TALF The put spread starts its largest increase between the beginning of February
2009 and peaks in the beginning of March. On February 10, 2010, U.S. Treasury Secretary Timothy
Geithner announces a Financial Stability Plan involving Treasury purchases of convertible preferred

stock in eligible banks, the creation of a Public-Private Investment Fund to acquire troubled loans
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and other assets from financial institutions, expansion of the Federal Reserve’s Term Asset-Backed
Securities Loan Facility (TALF), and new initiatives to stem residential mortgage foreclosures and
to support small business lending. The Federal Reserve Board announces that is prepared to expand
the Term Asset-Backed Securities Loan Facility (TALF) to as much as $1 trillion and to broaden
the eligible collateral to include AAA-rated commercial mortgage-backed securities, private-label
residential mortgage-backed securities, and other asset-backed securities. An expansion of the
TALF would be supported by $100 billion from the Troubled Asset Relief Program (TARP). In
the last week of February there is a lot of language about assurances to prop up the banking
system and Fannie Mae and Freddie Mac. Finally, on March 3, just before the spread for financials
peaks, the U.S. Treasury Department and the Federal Reserve Board announce the launch of the
Term Asset-Backed Securities Loan Facility (TALF). Under the program, the Federal Reserve
Bank of New York will lend up to $200 billion to eligible owners of certain AAA-rated asset-backed
securities backed by newly and recently originated auto loans, credit card loans, student loans
and small business loans that are guaranteed by the Small Business Administration. These events
suggest that markets gradually became reassured that the government was indeed committed to
bailing out the financial sector. Our measure of the value of the bailout guarantee suggests that
the market initially was not reassured by the initial TARP program and its implementation, which
consisted mostly of cash infusions from sales of preferred shares. Only when the Treasury and the
Fed explicitly announce programs to purchase toxic assets such as MBS does the collective bailout

guarantee become really valuable.

4.2 Non-financials

During the financial crisis, as market-wide volatility increased, even the index put options on the
non-financials became cheaper relative to the individual stock options. The solid line in figure 7
plots the put spread for non-financials during the crisis. The put spread hovers around 1 cent until
Lehman Brothers fails in September 2008. After that, it increases to 3.9 cents on October 10, and

it reaches a maximum of 4.1 cents on November 21. This suggests that for a brief period, the
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market was expecting some bailouts in the non-financial sector as well. For example, on November
18, the CEOs of General Motors, Chrysler, and Ford testify before Congress and request access
to the TARP for federal loans. This access is later granted on December 19, 2008. That said, the
magnitude of the put spread in non-financials is much smaller than in financials. Also speaking
to a divergence between the financial and non-financial sector are the different dynamics of their
put spreads. The financial put spread increases with every shock that hits the financial sector,
not so for the non-financial put spread. Also, the non-financial put spread is strongly positively
correlated with the VIX index, an economy-wide measure of implied volatility, while the financial

sector put spread is not.

5 Dynamic Asset Pricing Model with Financial Disaster
Risk

The critical difference between banks and other non-financial corporations is their heightened
exposure to bank runs during financial crises. Traditionally, such runs took place by depositors,
but in the modern financial system they took place by other creditors, such as investors in asset-
backed commercial paper, repos, money market mutual funds, etc. (see Gorton and Metrick,
2009). This leads us to consider banking panics or financial disasters as a source of aggregate
risk. To model the asset pricing impact of financial disasters, we use a version of the Barro (2006);
Rietz (1988); Longstaff and Piazzesi (2004) asset pricing model with a time-varying probability of
disasters, as developed by Gabaix (2008); Wachter (2008); Gourio (2008). The model features two
sources of priced risk: normal risk and financial disaster risk. While non-financial corporations are
also subject to these rare events, their exposure is more limited and they do not (or at least much
less) enjoy the collective bailout guarantee that supports the financial sector. The model allows
us to interpret the financial crisis as an elevated probability of a financial disaster (for pricing
purposes), as well as the realization of a financial disaster itself, and to make contact with option

pricing facts we document above.
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5.1 Environment

Preferences We consider a representative agent with Epstein and Zin (1989) preferences over

non-durable consumption flows. For any asset return R;;.;, this agent faces the standard Euler

equation:
1 = E[MyiRip],
W (Cet\ 7
Mt+1 = ﬁ ( Ct Ra,t-‘ila
where o = 11__1, ~ measures risk aversion, and 1 is the elasticity of inter-temporal substitution
¥

(EIS). The log of the stochastic discount factor (SDF) m = log(M) is given by:
a
My = alog f — EACH—I + (@ = D)ra 1.

All lowercase letters denote logs. We note and use later that % +1—a=n.

Uncertainty There is a time-varying probability of a disaster p;. This probability follows an
I-state Markov chain. Let Il be the 1 x I steady-state distribution of the Markov chain and P
the I x 1 grid with probability states. The mean disaster probability is II’'P. The Markov chain is
uncorrelated with all other consumption and dividend growth shocks introduced below. However,
the volatility of Gaussian consumption and dividend growth risk potentially varies with the Markov
state. This allows us to capture more Gaussian risk in bad states, associated with high disaster

probabilities.

In state i € {1,2,...,I}, the consumption process (Ac;11) is given by a standard Gaussian

component and a disaster risk component:

Acii1 = e+ 0emr1, if no disaster

c -
Aciy1 = e+ 0cimygr — Jiy,,  if disaster,
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where 7 is a standard normal random variable, and J¢ is a Poisson mixture of normals governing the
size of the consumption drop (jump) in the disaster state. We adopt Backus, Chernov, and Martin
(2011)’s model of consumption disasters. The random variable J¢ is a Poisson mixture of normal
random variable; the number of jumps is n with probability e_“’%. Conditional on n, J¢is normal
with mean (nf,) and variance nd?. Thus, the parameter w (jump intensity) reflects the average
number of jumps, 6. the mean jump size, and J, the dispersion in jump size.” Finally, we allow for
heteroscedasticity in the Gaussian component of consumption growth: o.; depends on the Markov

state 1.

Individual Dividends in Financial Sector In state i € {1,2,...,1}, the dividend process of

an individual bank is given by:

Adiir1 = pa+ @a0eitis1 + 0gi€ir,  if no disaster

Adipr1 = pa+ Ga0eiip + Oaiersn — Jiy — Jfy,  if disaster
where €1 is standard normal and i.i.d. across time. It is the sum of an idiosyncratic and an
aggregate component, which we introduce in the calibration below. The term exp (_Jtd—i—l — fﬂrl)
can be thought of as the recovery rate in case the rare event is realized. The remaining fraction
1 —exp (—J&, — J2,) of the dividend gets wiped out in a disaster. The loss rate varies across
banks; it has an idiosyncratic component J* and a common component J¢. The idiosyncratic jump
component Ji,, is a Poisson mixture of normals that are i.i.d. across time and banks, but with
common parameters (w, 04,d4). We set ; = 0, which implies that the idiosyncratic jump is truly

idiosyncratic; during a disaster the average jump in any stock’s log dividend growth is —E[J“].

Collective Bailout Option The key feature of the model is the presence of the collective bailout
option which puts a floor J on the losses of the banking sector. The aggregate component of the loss

rate is the minimum of the maximum industry-wide loss rate J and the actual realized aggregate

5Note that when J¢ is activated, we have already conditioned on a disaster occurring. Therefore, the parameter
w is not the disaster frequency but rather the mean of the number of jumps, conditional on a disaster. There is a
non-zero probability e™ of zero jumps in the disaster state. In what follows we normalize w to 1.
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loss rate J":

Jf+1 = min(J[H,i)

We model J” as a Poisson mixture of normals with parameters (w, 6,., d,.). For simplicity, we assume
that the jump intensity is perfectly correlated among the three jump processes (J¢, J*, J"), but the
jump size distributions are independent. We can think of the no-bailout case as J — +o0, so that

Je=J".

5.2 Valuing Stocks

Valuing the Consumption Claim We start by valuing the consumption claim. We log-linearize

Wit1 _ WCiy1 Ceya
Wi—Cy — WCi—1 C

the total wealth return R} | = as follows: 74441 = K + weip1 — Kfwey + Aci

with linearization constants:

K] = — (2)

kg = —log (e — 1) + k{we. (3)

The wealth-consumption ratio differs across Markov states. Let wc; be the log wealth-consumption
ratio in Markov state <. Then, the mean log wealth-consumption ratio can be computed using the

stationary distribution:
I
i=1
Note that the linearization constants s and «{ depend on wec.

Consider the investor’s Euler equation for the consumption claim: Ey[M, R ] = 1. This

investor’s Euler equation can be decomposed as follows:

1 = (1—p)Elfexp(alogf— = %

¢Acﬁr€) + arzjz\,ft[—i)-l)] + peEylexp(alog 8 —

Actl-)i-l + ar£t+1)]>

where ND (D) denotes the Gaussian (disaster) component of consumption growth, dividend growth
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or returns. We define “resilience” for the consumption claim as:
Hi=1+p, (Et [exp {(fy — 1)Jf+1}} — 1) )

Because the wealth-consumption ratio is not affected by the disaster -wealth and consumption fall

by the same fraction-, we can write the Euler equation as:

1= H/E, {exp {alogﬂ — %Acﬁff + arﬁﬁlﬂ .

Using the log linearization for the total wealth return, the Euler equation can be restated as follows:

o
1 = exp(hy)E, {exp {04 log 8 — @(Hc + o) + (kg + wepy — Kjwe + Acﬁff)}] :

Resilience takes a simple form in our setting:

h¢ log(Hy) =log (14 p; [exp {h°} —1]),

h¢ = logE; [exp {(7 — 1)Jf+1}} =w (exp {(7 — )0+ .5(y — 1)253} - 1) y

where we used the cumulant-generating function to compute h¢. It is now clear that resilience only
varies with the probability of a disaster p;,. Therefore, it too is a Markov chain. Denote by h{ the

log resilience in Markov state .

Solving the Euler equation for the consumption claim amounts to solving for the log wealth-
consumption ratio in each state . We obtain the following system of I equations, which can be

solved for we;, 1 =1,...1:
1 N
1 = exp(hf)exp {oz(logﬂ + kg) + (1 — y)pe — axfwe; + 5(1 — 7)20022} Z m;j exp {awc,} .
j=1

Taking logs on both sides we get the following system of equations which can be solved in conjunc-
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tion with (2), (3), and (4):

N
1
0= hi + a(log B+ ki) + (1 —7)pe — arjwe; + 5(1 —7)%02 + log Zwij exp {awc;} .
j=1

Valuing the Dividend Claim We log-linearize the stock return on bank i R, = P”%tm“ =

PDiy1+1 Dyyy

D D as follows: 74411 = /@8 + /@Cfpdtﬂ — pd; + Adyy 1, with the linearization constants:

d erd
K = T, 5
! 1+ erd ©)
ki = log(1+ e") — kipd. (6)

Consider the investor’s Euler equation for asset, F;[M;,1R{, ;] = 1, which can be decomposed as
follows:

a
(G

Acg-l + (a — 1)T£t+l + Tcll?t+1):|

1 = (1-p)E; {exp(alogﬁ — Aci\_fff + (o — 1)73]1\;21 + ré\fﬁl)]

o

+pi By [exp(a log 5 — v

If we define “resilience” for the dividend claim as:

th =1+p (Et [eXP {’VJtC-q-l - Jtd+1 - Jta+1H - 1) )
then the Euler equation simplifies to:

o
1= thEt [exp {alogﬂ — aAcﬁ? + (a— 1)7"(]1\,7131 + ré\fng .
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To compute the resilience term, we proceed as before:

=
~ R
I

log (1 + py (exp {Bd} - 1)) )

ha = log By [exp {vJiy — Ji — i}

By using the independence of the three jump processes, conditional on a given number of jumps,

we can simplify the last term to:

- o €W 00+50262) n(—04-552)
hg = log E e e 4%
n.

n=0
A ncorsmng (Lnb w08 L yp (m0 = I\
Vo, Vo,

The derivation uses Lemma 1 in the technical appendix. The last expression, while somewhat

complicated-looking, is straightforward to compute. In the no-bailout case (J — 400), the last

—0p+.562

exponential term reduces to e ). The dynamics of h¢ are fully determined by the dynamics

of p;, which follows a Markov chain. Denote by h¢ the resilience in Markov state i.

Solving the Euler equation for the dividend claim amounts to solving for the log price-dividend

ratio in each state i, pd;. We can solve the following system of N equations for pd;:

1 1
pdi = hi+alogf—pe+ (@ —1) (55 — Kjwes) + 5§ + pra+ 5(6a =)0 + 504
N
+log (Z mij exp { (a — Dwe; + /-{Cfpdj}> :
j=1
together with the linearization constants in (5) and (6), and the mean pd ratio:
pd = > Tpd;. (7)
J
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Equity Risk Premium An important object is the equity risk premium, the expected excess

log stock return adjusted for a Jensen inequality term.
—Cov(m,r) = Ypao2 — Cmi+ yCov(J?, J?) +~yCov(J?, J°),

Appendix B.3 derives the various terms as a function of the structural parameters. The first term
represents the standard Gaussian equity risk premium, the second term reflect compensation for the
risk that emanates from the Markov switches, while the last two terms are the pure compensation
for disaster risk. Since we will normalize 6; to zero, the second term is zero. Hence, the third
term is the disaster risk premium. It depends on the risk aversion coefficient, the probability of
a disaster, and how much aggregate consumption and financial sector dividends fall in a disaster.
The latter depends on 6, as well as on the bailout guarantee, J. Absent the bailout guarantee, the

disaster risk premium would be yp;(2 — p;)0.0,, which is higher than with the guarantee.

5.3 Valuing Options

The main technical contribution of the paper is to price options in the presence of a bailout

guarantee.

Options on Individual Banks We are interested in the price per dollar invested in a put
option (cost per dollar insured) on a bank stock. For simplicity, we assume that the option has a

one-period maturity and is of the European type. We denote the put price by Put:
Putt == Et [Mt+1 (K - Rt+1)+} = (1 —pt)PUtiVD —l—ptPuttD,

where the strike price K is expressed as a fraction of $1; for example K = 1 is the at-the-money
option. The put price is the sum of a disaster component and a non-disaster component. We derive

both components next.
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Conditional on no disaster Conditional on no disaster in the next period, we are back to the

familiar Black-Scholes world (with Epstein-Zin preferences). The option value in state i is:

Put}? = E[MYP(K — RYP)*]

= —-F [exp (mND + T’ND) 1k>,,ND} + KFE [exp (mND) ].k>TNDj|

We condition on a Markov state transition from state ¢ in the current period to state j in the next
one. Then, the log SDF and log return are bivariate normally distributed; see Appendices B.2 and

B.3. Application of Lemma 1 in Appendix B.1 leads to the familiar Black-Scholes value of a put

option:
ND ND _ND —r[ NP
Putij = —\11(1, ]_, m , T )(I)(dw — O'M') + Ke i (I)(dw), (8)
where djy? = k_’”zj%, where k = log(K), j4; is the mean log stock return conditional on a tran-

sition from ¢ to j and no disaster, ,; the volatility of the log stock return in state ¢, 7, the covari-

2.2
azgg b o

ance of log return and log SDF, and where ¥(a, b; z,y) = exp (a,um +opy + ==+ ¢+ abpxyaxay)

is the bivariate normal moment-generating function of x and y evaluated at (a,b). We have used
the fact that U(1,0;m"?,rNP) = exp(pn; + .502,) = exp(—r{""), where r/"” is the risk-free

rate in Markov state ¢, conditional on a transition to state j and conditional on no disaster. As

ND pNDY = 15 Since we conditioned on

an aside, if there were no disaster state, then W(1,1;m
a particular transition to state j, we still have to average over all such transitions to obtain the

no-disaster option price in state i:

I

ND _ ND

Put; = E i Put;; .
j=1

6This would follow immediately from the fact the no-disaster return would satisfy the Euler equation. We would
then have that p,. = r/"NP — o, . — 502 with —0,,, = y¢o2 as the familiar Gaussian equity risk premium.

Equation (8) would then collapse to the standard Black-Scholes formula, with dVP = b Y

Or
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Conditional on a disaster Conditional on having a disaster, the formulae become a lot more
involved because of the presence of a bailout option. Backus, Chernov, and Martin (2011) derive
option prices in a setting similar to ours, but one that does not have the bailout option. In their
setting, Black-Scholes can be applied because log returns are a Poisson mixtures of normals, so
that they are normally distributed conditional on a given number of jumps. Option prices are
then simply weighted-averages of Black-Scholes values, weighted by the Poisson probability of a
given number of jumps. In the presence of the bailout option, log stock returns are no longer
normally distributed; They contain a term J* = min(J",J), where J" is normal conditional on a
given number of jumps; J* is not normal. A technical contribution of the paper is to show that
we can still obtain closed-form expressions for the put option price. The result hinges on repeated
application of Lemmas 1 and 2, stated in Appendix B.1. The details of the derivation are relegated

to Appendix B.4.

We start by conditioning on a Markov state transition from state ¢ to state j and we condition

on n jumps to the three jump processes (J¢, J*, J"). The option value is

Put?

ijin T E[MD(K_RD)JF}
B [exp (P + 1) 1] + KE [exp (m?) 1],

= —Put? . + Put?

ijnl iyn2-

N

We define the random variable 7 = VP — J¢. Log returns in the disaster state are r? = 7 — J°.

The appendix derives the following expressions for the two terms in the put price:

— s g2 . — 52 _ 2
Putl, = WL 1mP, 5§ et (Bt b b= 08— own p 8 = 0r) L=y tnd,
02+ no? V1o,

—|—€_iq) l+k_ﬂr]+n92—U§—UmD7f (I) ner—l
o d/n

» k — rJ ‘9@_ m*© T ‘97“ - r
Putl, = Ke—ffjf{cp< trg + 104~ Omyz 4 10 ne;p)

ijn2 /70_2_‘_7152 ) \/ﬁér
v <i+k—um'—|—n9i —amp,;) o (n@r —l)}
Or 57“\/5
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f?D

~ —pHD . . " .
We note that W(1,0;mP,7) = e " | where Tiqm 18 the risk-free rate conditional on a disaster

realization, n jumps, and a Markov transition from state ¢ to 7. The correlation coefficient is:

_w
Vo2 +nd? +nd?

p:

Note that equations (9) and (10) are entirely in terms of the structural parameters of the model.

Thus, we essentially obtain closed-form solutions for the option prices.

Finally, we sum over the various jump events and Markov states j to obtain the disaster option

price in state 4:

n

(—Put],, + Put] ). (11)

! = e W
Put? = ;mvj ; i
Special case: no bailout option We verify that the above put price collapses to the simpler
case of no bailout options, that is J* = J". This is the case as J — +00. Appendix B.4 shows that
option prices are Poisson-mixtures of the Black-Scholes expressions in (8), except that the mean
and volatility of returns are (risk-neutrally) adjusted for the jumps and that the jump intensity
used in the counterpart of equation (11) is increased from the physical intensity to account for risk
aversion: w* = wexp (v0. + .57y?62). This risk-neutrality adjustment is also taking place in our

more general model with bailout options, but it is implicit in the ¥(-) terms.

Options on the Financial Sector To aggregate from the individual firms to the index, use a
generic set of index weights w;,j = 1,---, N; for the sector i’s constituents, where ijl w; = 1.
We assume that all individual firms in an index face the same dividend growth parameters (ex-
ante identical except for size w;). Assuming in the model that all stocks initially trade at $1, the

one-period dividend growth rate of the index in the model is given by:
J
A" =3 " w;dd
j=1
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The weights allow us to take into account a finite number of index constituents as well as sector
concentration, as measured by \/( S~ w?). The Gaussian dividend growth shock e, which is not
priced, has standard deviation 4. We assume that a fraction &; of its variance is aggregate, with

the remainder being idiosyncratic. It follows that the Gaussian variance of the index is given by

N;
o = oaiy | (Ca+ Y w1 — &)
j=1

The gains from diversification make the Gaussian variance of the index lower than that of its
constituents. Similarly, the idiosyncratic tail risk of the financial sector index is much lower than

that of any individual stock:

and #7¥® = §; = 0. The growth rate of the sector’s dividends is then given by:

ind. . .
Adfi1 = pa+ @a0einr + 0 %ey1, if no disaster
a index d,index a . .
Adfiy = pa+ @it + 05 Fe — Sy — Jig,  if disaster

Since J4"e® has mean zero, exp (_Jf+1) is the recovery rate of the index in case the rare event is

realized.

6 Quantitative Implications

The goal of this section is threefold. First, we argue that a (state-of-the-art) structural model with
bailout guarantees can explain the pattern in option prices and stock returns we document in the
previous section. Second, we show that a model without bailout guarantee cannot. Third, we use
the structural parameters of the model to infer the effect of the bailout option on financial firms’
expected return, their cost of capital, and the overall dollar size of the government subsidy implied

by the bailout guarantee.

32



6.1 Parameter Choices

We calibrate the model at the annual frequency to match it up with option prices with one-year

maturity.

Disaster probabilities We set the number of Markov states I equal to 2 and treat the first state
as the pre-crisis state and the second state as the crisis state. We define a financial crisis as a period
of elevated probability of a financial disaster. Our sample is 78 months long and 23 of these months
are a crisis, or 29.5% of the months. We choose the elements of the transition probability matrix to
match the 29.5% fraction of the time in a crisis and to obtain that, conditional on being in a crisis,
the expected length of a crisis is 2 years, the length of the crisis in the data. This leads us to set
w1 = .79 and 7wy = .50. We set the probability of a financial disaster equal to 7% in state 1 and
28% in state 2. This gives a steady state financial disaster probability of p,s = 13%, matching the

historical frequency of financial disasters in the U.S. since 1800; see Reinhart and Rogoff (2009).

Consumption We set i, equal to real per capita total consumption growth during the pre-crisis
period, which is 2.21% in our sample. Coincidentally, that is also the average over the full 1951-
2010 sample. Unconditional average consumption is . — pss6. in the model. We choose 6. = .065 to
match average annual real consumption growth of 1.37% over our 2003-2009 sample. That means
that annual consumption drops 4.3% (2.2-6.5%) in real terms in a disaster. This 4.2% consumption
drop (in levels) is close to the 5.9% annual consumption drop during a typical financial crisis in
developed economies, as reported in Reinhart and Rogoff (2009).” We choose o.(1) = .0035 to
match the standard deviation of real per capita consumption growth (annualized from overlapping
quarterly data) of 0.35% in the pre-crisis period. We set J, = .035 to allow for some non-trivial
dispersion around the size of the consumption disaster and we allow for a doubling of Gaussian
consumption risk to o.(1) = .0070. This delivers an unconditional consumption growth volatility

of 0.92% per year given all other parameters. This is close to the observed volatility of 0.81% in our

"Reinhart and Rogoff find that the (worldwide) average financial crisis is associated with a 35.5% fall in GDP
over six years. Barro and Ursua (2008) find that consumption disasters are typically of the same magnitude as GDP
contractions during crises.
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sample and exactly matches the 0.92% in the 1951-2010 sample. Seen from the model’s perspective
and interpreting the period 2007-2009 as the realization of a disaster, the observed consumption
growth rate of -0.7% (or 2.9% lower than in the non-disaster state) was one standard deviation

above the mean growth rate in disasters.

Preferences We set the coefficient of relative risk aversion equal to 10 and the inter-temporal
elasticity of substitution equal to 3. The combination of a high risk aversion and a high EIS allows
us to simultaneously generate a meaningful equity risk premium and a low risk-free rate. The
high risk aversion will also be necessary to match the high out-of-the-money put prices observed
during the crisis. We set the subjective time discount factor g = .9555. The unconditional real
risk-free rate that results is 2.44% per year. It is 3.43% in state 1 and 0.07% in state 2, reflecting
the additional precautionary savings motive when a disaster is more likely. This compares to an
observed average yield on a one-period zero coupon government bond of 0.66% in the pre-crisis
period and 0.05% in the crisis period, after subtracting realized inflation. Lowering average interest
rates, as well as the difference between the interest rates in state 1 and 2, is possible if we further
increase the EIS, while simultaneously increasing the time discount factor. We opt not to do this
because the EIS is already high. Furthermore, we need strictly positive interest rates in both
states in order to be able to compute implied volatilities from put prices in matlab. Our parameter
choices are a compromise that still delivers the low interest rate environment of our sample period.
The unconditional volatility of the risk-free rate is low at 1.54% per annum, matching the 1.59%

volatility in our sample.

Dividends Next, we calibrate the parameters that govern the dividend growth rate of the firms
in the financial sector. The mean growth rate of any firm, and therefore of the index, is pg = .08
in order to match the high observed dividend growth rate on the financial sector index in the
pre-crisis period. We set ¢, = 3, a standard choice for the leverage parameter. This delivers a
negligible Gaussian equity risk premium y¢q0? of 4 basis points in state 1 and 15 basis points in

state 2. The entire equity risk premium in the model reflects compensation for disaster risk.
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The key objects of the model are the parameters that govern the Gaussian and especially the
tail risk. We use a representative set of index weights for the financial sector index constituents
(that of 04/09/2010, 79 firms on that day) for w; where Z}]=1 w; = 1. The concentration metric
v/ (3~ w?) measures concentration is 0.22 for the financial sector (on that day). This measure would
only be half as large (0.11) if all 79 firms had equal size. We keep o, constant across Markov states
in our benchmark calibration for simplicity. We recall that w = 1, which implies that the average
number of jumps during a disaster is one, and that #; = 0, which implies that the idiosyncratic
jump is truly idiosyncratic. These are best thought of as sensible normalizations. The parameters
that remain to be calibrated are © = (04,4, J, 0,,d,,94). Together these parameters determine
the equity risk premium, the volatility of dividend growth and returns at the individual and index
level, the pairwise correlation between stock returns, and all option prices. It is the parameters in

O that we vary between our benchmark calibrations with and without bailout.

6.2 Economy with bailout guarantee

In a first exercise, we ask whether we can match average prices on deep out-of-the-money puts and
calls (A = 20, TTM=365) on the financial sector index, the basket of financial stocks, and their
spread in both the pre-crisis (state 1 in the model) and the crisis period (state 2). Simultaneously,
we are interested in matching the correlation between return pairs and the volatility of the index
returns in both states. That is 16 moments. Our benchmark calibration for the financial sector

sets

OF = (04,4, J,0,,6,,64) = (0.15,0,0.921, 0.815, 0.55, 0.516).

Because the disaster probability is modest in state 1, Gaussian risk is what mostly drives the
standard deviation of the index and the correlation among stocks in that state. The choice £; = 0
implies that all the unpriced Gaussian dividend growth risk is idiosyncratic. This creates relatively
more idiosyncratic risk, increasing the basket-index spread for both calls and puts in both states 1
and 2. It also allows us to lower the pairwise return correlation (by increasing o), without causing

much of an increase in the volatility of the index return. The choice o, = .15 allows us to match
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the 43% pairwise correlation between stock returns in the pre-crisis period. It generate a financial

index return volatility of 19%, which is reasonably close to the 12% in the pre-crisis period.

We choose a high value for the aggregate tail risk parameter 6, = .815 as well as a high
dispersion ¢, = .55. That means that, absent bailout options, the financial sector would suffer a
return drop of 81.5% or 55.7% in levels, with a wide confidence interval around it. However, the
bailout option J substantially limits the losses for the index. The mean loss 6,, which takes into
account the bailout, is 46.5% or 37.2% in levels. At the same time, there is substantial idiosyncratic
tail risk o4 = .516, meaning that some firms fare a lot better than others in a financial disaster.
Importantly, the bailout only applies to the aggregate and not the idiosyncratic tail risk. Our
parameters are such that there is enough residual aggregate tail risk (after the bailout) to make all
options expensive enough, and enough idiosyncratic tail risk to make basket options more expensive
than index options. However, there cannot be too much idiosyncratic tail risk or else the pairwise
correlation of stock returns would fall from state 1 to state 2, because it would be very low in a

crisis. We come back to the point in the next subsection.

As Panel B of Table IV shows, our model is able to quantitatively account for the observed
option prices. It matches the put basket and index prices in the crisis (state 2) perfectly. It also
generates about the right level for put prices in the pre-crisis period (state 1), but it understates
the put spread in state 1. In any case, the model is able to account for a large run-up in the put
spread between the pre-crisis period and the crisis period. In the model, this run-up is caused by
a four-fold increase in the probability of a financial disaster. Similarly, the model generates about
the right prices for deep out-of-the-money call options. In particular, it captures the feature of
the data that the call spread decreases from the pre-crisis to the crisis period. The model slightly
overstates the call spreads. The option-implied volatility from the put index increases from 31.2%
pre-crisis to 46.7% in the crisis inside the model. The latter number is only slightly above the
model’s realized index volatility in a disaster of 46.4%. The difference between option-implied
and realized volatility shrinks substantially during the crisis: from 12% to 0.3%. In the data, the

pattern is the same with implied volatility 9.8% above realized volatility pre-crisis and 4.7% in the
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crisis.

Panel B of Table V shows that the model also generates an increase in the volatility of index
returns, thanks to the large amount of aggregate tail risk. Finally, the model generates a substantial
increase in the pairwise correlation of returns from pre-crisis to crisis. While it still understates
the rise in the data, the increase is important and goes hand in hand with the bailout option.
Intuitively, in state 1 the correlation mostly reflects Gaussian risk and the Gaussian correlation
is low because all € shocks are idiosyncratic. Because of the substantial amount of aggregate tail
risk -relative to the idiosyncratic tail risk-, the correlation between returns in the disaster state
is higher (40% versus 16% in the non-disaster state). Since state 2 gives the disaster state more
weight, the correlation rises from state 1 to 2. Absent bailout, this amount of aggregate tail risk
would lead to option prices that are too high.

The large amount of idiosyncratic Gaussian and tail risk deliver individual stock returns that
are volatile: 27% in the pre-crisis and 44.5% in the crisis. Conditional on a disaster, individual
stock return volatility is 69.5%, not unlike the observed 72.9% realized volatility of individual
financial firms during the crisis period. Implied volatility from the put basket is 61.3% during the
crisis in the model, substantially below realized volatility of 69.5%. The same is true in the data,

where implied volatility is 59.5%, below the realized volatility of 72.9%.

6.3 Economy without bailout guarantee

Having shown that we can match the option prices of interest in the presence of a bailout guarantee,
we now show that the bailout guarantee is essential. To that end, we set J = +o00, and search over
the remaining parameters of © to best match the 16 moments of interest. We find the best match

for:

ONB = (04,84,.,0,,0,,64) = (0.15,.628, +00, 0.2825,0.25, 0.65).

This calibration features a higher level of idiosyncratic tail and a much lower level of aggregate tail
risk. The aggregate dividend falls 25% during a disaster, with substantially less dispersion around

it. It also has a lower level of Gaussian tail risk because 2/3 of the € shocks are now common across

37



firms.

As Panel C of Table IV shows, the model without bailout guarantee matches put option prices
in the crisis equally well. It also does a reasonably good job matching put prices in the pre-crisis
period, but understating the put spread just like the model with bailouts. The match for call prices
is worse than for the model with bailouts. In particular, this model shows a negative call spread in
the pre-crisis which rises during the crisis. The opposite is true in the data. The implied volatility
from basket calls and puts is about the same, while it is much lower for calls than for puts in the

data. The latter again reflects the high degree of idiosyncratic tail risk in this calibration.

The main problem with this calibration, however, is that the correlation between stock returns
goes down in the crisis, as can be seen in Panel C of Table V. The reason is that correlations
between stocks are very low during disasters in this model because idiosyncratic tail risk is high
while aggregate tail risk is low. To match the pre-crisis correlation, the model must make most of
the Gaussian risk systematic. This decline in correlation is a highly counter-factual and undesirable
feature of the model without bailouts. Another related issue is that the idiosyncratic tail risk is so
high that price-dividend ratio of individual stocks blows up (it is 225,602 in levels while the one

for the index is a reasonable 19).

6.4 Non-Financial Sectors

Next, we ask whether the model can explain the options prices and return moments for the non-
financial sectors. We documented smaller increase in put spreads during the crisis, as repeated
in the top panel of Table VI. Table VII also shows a much smaller increase in the volatility of
individual stock and index returns for on-financials than for financials. Volatilities are higher in
the pre-crisis than for financials, but substantially lower during the crisis. Also return correlations
are lower, but increase to the same high level as for financials, implying a stronger increase.

Matching these return facts necessitates a recalibration of the dividend growth parameters for the
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non-financial sector. All other parameters stay at their benchmark values. We choose

N = (04,84,.,0,,6,:,64) = (0.17,0.14, 00, 0.219, 0.15,0.23).

This calibration features no bailout option, substantially less idiosyncratic and aggregate tail risk,
and slightly more unpriced Gaussian risk, a larger fraction of which is aggregate. This allows us to
match the return volatility and correlation moments well, as shown in Panel B of Table VII. The
option prices in Panel B of Table VI also provide a good match to the put prices in the crisis. They
generate the 1.6 cents put spread of the data. They also generate a large increase in the put spread
from pre-crisis to crisis. The model also captures the decline in the call spread that we found in the
data, but overstates OTM call price levels and spreads somewhat. Overall, these results suggests
that, to a first-order approximation, it is appropriate to think of the bailout guarantee as being

confined to the financial sector.

6.5 Cost of Capital and Systemic Risk Measurement

Finally, we use the model’s parameters to gauge the effect of the bailout option on the cost of
capital of financial firms and to compute a measure of the total value of the subsidy implied by
the collective bailout guarantee.

The benchmark model’s equity risk premium for the financial sector index is 4.7% per year in
the pre-crisis and rises to 14.0% during the crisis. The bailout guarantee plays an important role in
keeping the equity risk premium down. Without it, and holding all other parameters constant, the
equity risk premium would be exactly twice as large. We conclude that option prices tell us that
the bailout option substantially reduces the cost of capital for systemically risky financial firms.
Similarly, we find that the price-dividend ratio in the model with bailout guarantees is 49.5% lower
pre-crisis (in state 1) and 61% lower in the crisis state (state 2) than it would be absent guarantee.
This implies that the bailout guarantee accounts for fully half of the value of the financial sector
when calibrated to our sample.

Our model also enables us to measure systematic risk in the presence of a bailout guarantee.
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In particular, our calibration of the financial sector model with bailout guarantees delivers the
aggregate amount of aggregate tail risk is that the financial sector takes on. Absent guarantees, the
average financial firm would suffer a return fall of 55.7% in a financial disaster, compared to 37.2%
with guarantees. The guarantee also affects the higher-order moments of the recovery distribution.
The high and variable aggregate tail risk would presumably incur much higher (systemic) regulatory

capital charges if detected and measured properly. The structural model allows us to do so.

7 Alternative Explanations

We consider three alternative explanations to collective bailout options: mispricing, liquidity, and
time-varying correlation risk premia. We conclude that none is consistent with the patterns in the

data.

7.1 Mispricing

Recent research has documented violations of the law of one price in several segments of financial
markets during the crisis. In currency markets, violations of covered interest rate parity have been
documented (see Garleanu and Pedersen, 2009). In government bond markets, there was mispric-
ing between TIPS, nominal Treasuries and inflation swaps (see Fleckenstein, Longstaff, and Lustig,
2010). Finally, in corporate bond markets, large arbitrage opportunities opened up between
CDS spreads and the CDX index and between the corporate bond yields and the CDS (see
Mitchell and Pulvino, 2009)). A few factors make the mispricing explanation a less plausible
candidate for our basket-index put spread findings.

First, trading on the difference between the cost of the index options and the cost of the basket
does not require capital, unlike some of these other trades (CDS basis trade, TIPS /Treasury trade).
Hence, instances of mispricing in the options basket-index spread due to capital shortages are less
likely to persist (see Mitchell, Pedersen, and Pulvino, 2007; Duffie, 2010).

Second, if we attribute our basket-index spread findings to mispricing, we need to explain the

divergence between put and call spreads. This asymmetry rules out most alternative explanations,
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except perhaps counter-party risk. The state of the world in which the entire financial sector, or
the whole economy, is at risk is the state of the world in which OTM index put options pay off.
However, these are exchange traded options and hence are cleared through a clearing house; no
clearing house has ever failed. All options transactions on the CBOE are cleared by the Options
Clearing Corporation (OCC). The OCC is the first clearinghouse to receive Standard & Poor’s
(S&P) highest credit rating. Hence, these options are very unlikely to be affected by counterparty

default risk.

Finally, our analysis of implied volatility on index options has established that these index
options are cheap during the crisis even when comparing implied to realized volatility. This com-
parison does not rely on individual option prices, which may be less liquid and hence more likely

to be subject to mispricing.

7.2 Liquidity

Table VIII report summary statistics for the liquidity of put options on the S&P500, sector indices
(a value-weighted average across all 9 sectors), the financial sector index, all individual stock options
(a value-weighted average), and financial stock options. The table reports daily averages of the
bid-ask spread in dollars, the bid-ask spread in percentage of the midpoint price, trading volume,
and open interest. The columns cover the full range of moneyness, from deep out-of-the-money
(A < 20) to deep in-the-money (A > 80), while the rows report a range of option maturities. We
separately report averages for the pre-crisis period (January 2003 until July 2007) and the crisis
period (August 2007 until March 2009). It is worth pointing out that a substantial fraction of trade
in index options takes place in over-the-counter markets, which are outside our database. Hence,
these numbers overstate the degree of illiquidity. Absent arbitrage opportunities across trading

locations, prices in our database do reflect this additional liquidity.

Deep OTM put options with |A| less than 20 have large spreads, and volume is limited. We do
not use these prices. OTM puts with |A| between 20 and 50 still have substantial option spreads.

For the long-dated OTM puts (maturity in excess of 180 days), the average pre-crisis spread is
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5.5% for the S&P 500, 12.8% for the sector options, 10.8% for the financial sector options, 6.8% for
all individual stock options, and 7% for individual stock options in the financial sector. Financial
sector index options appear, if anything, more liquid than other sector index options. The liquidity
difference between index and individual put options is smaller for the financial sector than for the

average sector.

Interestingly, during the crisis, the liquidity of the options appears to increase. For long-dated
OTM puts, the spreads decreased from 5.5 to 4.7% for S&P 500 options, from 12.8 to 7.8% for
sector options, from 10.8% to 4.5% for financial sector options, from 6.8 to 5.5 % for all individual
options, and from 7.0% to 5.8% for financial firm’s options.® At the same time, volume and open
interest for long-dated OTM puts increased. For example, volume increased from 400 to 507 for
the S&P 500 index options, from 45 to 169 for the sector options, from 287 to 1049 for financial
index options, and from 130 to 162 for individual stock options in the financial sector. Short-dated
put options (with maturity less than 10 days) are much more liquid than long-dated options; they
experience a much larger increase in trade during the crisis. We verify below that our results
are robust across maturities. During the crisis, trade in the OTM financial sector put options
invariably exceeds not only trade in the other sector OTM put options but also trade in the OTM
S&P 500 options.

Long-dated in-the-money options have somewhat smaller percentage bid-ask spreads but some-
what lower volume than out-of-the-money put options, in both subsamples. Table IX reports the
same liquidity statistics for calls. There is no marked difference between puts and calls.

These liquidity facts are an unlikely explanation for our findings, often pointing in the opposite
direction. Calls and puts are similarly liquidity yet display very different basket-index spread be-
havior. The relative increase in liquidity during the crisis of financial sector index versus individual
options suggests that index options should have become more expensive, not cheaper during the
crisis. Finally, the increase in the basket-index spread during the crisis is also (and even more

strongly) present in shorter-dated options, which are more liquid. All three facts suggest that

8 Absolute bid-ask spread increase during the crisis but this is explained by the rise in put prices during the crisis.
Absolute bid-ask spreads increase by less than the price.
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illiquidity is an unlikely candidate.

7.3 Time-Varying Price of Correlation Risk

Index put options are typically considered to be expensive. Returns on index put options are large
and negative: -90% per month for deep out-of-the-money put options (see Bondarenko, 2003).
CAPM alphas are large and negative as well, and the Sharpe ratios on put writing strategies are
larger than those on the underlying index. However, this does not imply these options are mispriced
(see Broadie, Chernov, and Johannes, 2009). Stochastic volatility models and models with jumps

can explain many features of these returns.

Index options are also typically expensive relative to individual stock options. Driessen et al.
(2009) attribute this to a negative correlation risk premium. The value of the index option increases
when correlations of the basket constituents increase. Index options provide investors with a hedge
against the increase in correlation, which constitutes a deterioration in the investment opportunity
set. A related stylized fact is that the implied index volatility is always higher than the expected
realized index volatility, but the implied volatilities for individual stocks are not significantly higher
than their expected realized volatilities. These features arise form models with (i) a zero risk price

for idiosyncratic variance risk and (ii) a negative risk price for correlation risk.

We showed that the patterns for financial sector put options during the crisis were exactly
the opposite. Implied volatility is often lower than the realized volatility for the index but not
for the individual stocks during the crisis, and the index put option decreases in price relative to
the individual options despite an increase in return correlations. These patterns for puts could
in principle be consistent with a decrease in the price of correlation risk (in absolute value) over
time. But, if anything, one would expect the price of correlation risk to increase in absolute value
during the crisis. Furthermore, such a decreased price of correlation risk would have counter-factual
implications for call spreads, which would be predicted to increase as well. The data show a decline

in the call spread during the crisis instead.
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8 Conclusion

The financial crisis brought the problem of government guarantees front and center. Underpriced
mortgage guarantees charged by Freddie Mac and Fannie Mae, mispriced deposit guarantees by the
FDIC, and implicit too-big-to-fail guarantees to Citibank, AIG, and other large complex financial
institutions all distorted the financial sector’s capital allocation during the Great Moderation and
let to an unparalleled build-up of risk. The worst financial disaster since the Great Depression
ensued in 2007-2009. Financial authorities worldwide are passing new legislation to prevent a
repeat of these events. An important question they face is how to best measure systemic risk.
Most proposals under investigation rely on market prices. One important message of our paper
is that measuring systemic risk is inherently difficult when the government provides (implicit)
too-big-to-fail guarantees to the financial system.

We propose a structural model that can disentangle true exposure to aggregate tail risk from
exposure implied by market prices. Our model identifies the magnitude of the collective bailout
guarantee to the financial sector from the difference between the price of a basket of put options
on individual financial firms and the price of a put option on the financial sector index. It ascribes
the increase in the put spread to an increased probability of a financial disaster. During such
periods, there is an increase in the relative amount of aggregate versus idiosyncratic tail risk,
which helps to explain the increased return correlation between stocks. Put spreads can only rise
because of a collective bailout guarantee which makes index options artificially cheap. Our model
calibration suggests that the government’s backstop massively reduced the cost-of-capital to the
financial sector over our 2003-2009 sample. The massive amount of aggregate tail risk the sector
takes on would lead to a fifty percent reduction in its market value if the guarantee were taken

away.
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A Construction of Index Strike

A.1 Sector SPDR

The S&P 500 Index is an unmanaged index of 500 common stocks that is generally considered repre-
sentative of the U.S. stock market. The Select Sector SPDR, Trust consists of nine separate investment
portfolios (each a Select Sector SPDR Fund or a Fund and collectively the Select Sector SPDR Funds or
the Funds). Each Select Sector SPDR Fund is an index fund that invests in a particular sector or group
of industries represented by a specified Select Sector Index. The companies included in each Select Sector
Index are selected on the basis of general industry classification from a universe of companies defined by
the Standard & Poor’s 500 Composite Stock Index (S&P 500). The nine Select Sector Indexes (each a
Select Sector Index) upon which the Funds are based together comprise all of the companies in the S&P
500. The investment objective of each Fund is to provide investment results that, before expenses, corre-
spond generally to the price and yield performance of publicly traded equity securities of companies in a
particular sector or group of industries, as represented by a specified market sector index. The financial
sector’s ticker is XLF. Table X reports the XLF holdings before and after the crisis.

B Option Pricing Derivations

B.1 Auxiliary Lemmas

We state and prove two important lemmas which are invoked repeatedly to derive the option prices.

Lemma 1. Let x ~ N(pg,02) and y ~ N(py,05) with Corr(x,y) = pgy. Then

(12)

€ — by — bO2 — APy 040
Elexp(az + by)lesy] = ¥(a, byz, y)® ( ly — 2 — Wy y)

Ty
252 b0l . L .
where ¥(a,b; z,y) = exp <a,ux + bpy + % + % + abpxyamay) is the bivariate normal moment-generating

function of x and y evaluated at (a,b).

Proof. Lemma 1 First, note that z|y ~ N (,ur + p””;’—;””[y — iy, 02(1 — piy)), therefore

Elexp(aa)ly] = Qexp 2272
Yy
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2 204 2
where @ = exp (auz apryOstty | 201 p””y)). Denote I' = Elexp(az + by)1cs,], then:

oy 2

I' = FE[E{exp(ax)|y}exp(by)lesy]

" ol o2 )
- Q/ exp< {“pxy”“"’ +b}> dF (y)

2 2
APry0 Y Hy dy
= ex +b+ -
Q/ p( { o'y} 205 205) oyV2m

Complete the square

2
: : o (o vor ]
O' o - d
= Qexp <—0'y {ap;pyam + b} + fy {apxyo-m + b}) / exp | — Y ? %y Y

2 oy oy oo 202 oyV2m

y_o.g{apl‘yo—z +b+ lu‘y}

Substitute u = , duoy, = dy
Oy
2 2 2 2 2 2
a“os (1 — c—boZ — apyy o0y —
= exp| aus I M % {ap:cya'x + b} + b,LLy P y Pwy xYy My
2 2 Oy oy
O
Lemma 2. Let v ~ N(pz,02), then
bg —t c—t
E[® (b + biz) exp (ax) Loee] = @ | ——=5= ,— ;p | exp(z1) (13)

_ _ 2 _ a’o3 _ _—bog Y : :
where ty = —bita, ta = aoy + g, 21 = —5° + aplg, p = WL and ® (- ;- ;p) is the cumulative density

function (CDF) of a bivariate standard normal with correlation parameter p.
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Proof. Lemma 2 Denote Q = E [® (by + byz) exp (az) 1,<.], then:

/_coo /_l:rblx exp (az) dF (v)dF ()

/c /b0+b1x v [z — ,ux]2 dv dx
exp | ax — — —
oo oo 2 202 02T

Substitute v = u + b1z, dv = du

/c /b‘) (u+bz)? [z —p)’\ dude
exp | ax — —
oo oo 2 202 02T
¢ [ u? 1 2\ dud
2 1 Haz Haz u ax
exp| —— —= —+—>—b1ux+0u+x<a+ >——>—
/_oo /_oo ( 2 <2U% 2 o2 202 ) o.2m

Complete the square in two variables using Lemma 3
¢ rbo ox u—t1 \ [ sl s2 u—tq L du dx
oo J oo P T — it s2 s3 T —to ! 0327

/_OO /_b; exp (—%(U —TY(=28)(U - T) + Zl> du dz

027

- - (1 b 1 [ 1+bo2 —bo? -
where U = (u,x),T = (t1,t2), —25 = < by b%—ké ),(—25) = < b0 o2 . This is the

CDF for U ~ N(T,(—25)~ ) Letwl:\/qf;z—;‘a”LUQ:x to and2_<l1) ?)Withp:7\/%‘ We
1%z 17

have that W’ = (w1, ws2) ~ N(0,%). Also, du = dw;y/1 + b?02 and dz = dwso,.

bo—t1
floi2.2 1 dw1 dwg
Q = exp(z / / 1o ox (——WZ 1W> \/1+b202+/1 — p?
p(21 { p D) o 1_ 1

— —t
~ o e

\/1+b%0'926 ’ Oy

where we used that \/ 1+ b%ag\/ 1 — p2 = 1, and where completing the square implies t; = —bytg, ty =

2 2
ac? + g, 81 = —.5, s9 = —.5by, 83 = —.5b% — and z; = “5% + aji, by application of Lemma 3. [

1
20% ’

Lemma 3. Bivariate Complete Square

/
A:n2+By2+ny+Dx+Ey+F:<”5—’51> (Sl 82><w—t1 >+z1
y—t2 Sy 83 y —to
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where

t1 = —(2BD —CE)/(4AB — C?)
ty = —(2AFE —CD)/(4AB — C?)
51 = A

so = ()2

s3 = B

BD? — CDE + AE?

- [ —
A1 1AB — (2

The following lemma will be useful in deriving the variance and covariances of stock returns.

Lemma 4. Let Z ~ N(u,0?) and define ¢ = ¢ <bTTM> and ® = P (I)?T”) Then

E[le<b] = ,u<I> - 0'(25, (14)
EZ*174) = (0 +p?) @ —o(b+p)é (15)
Proof.
ElZlyw] = E|Z|Z < bPr(Z <b) = (u - %f’) = ud — 00

The second result is shown similarly:

E|Z*174) = E[Z*Z < bPr(Z <b)
= (Var[Z%Z < b+ E|Z|Z < b)*)Pr(Z < b)

2
(e o]

= (P +p?)®—o(b+p)¢

B.2 Dividend Growth and Return Variance and Covariance

Recall that dividend growth in state ¢ today is

Ad; = (1—p)AdNP 4+ p;AdP,
Adf\’ b= Hd + Paocin + o€,
AdiD = g+ Gqoen + ogie — Jt— e

where the shock € = /€4¢ + /1 — £4¢' is the sum of a common shock and an idiosyncratic shock, both of
which are standard normally distributed and i.i.d. over time. Stock returns in state i today and assuming
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a transition to state j next period are:

ri = (L=p)r}? +pir?,
NP = pij + Gaoen + o,

rP = pij + Gaoen + oae — I = J%,
MPrij = pd+ /-ig + milpdj — pd;,

J* = min(J",J)

We are interested in computing the variance of dividend growth rates, the variance of returns and the

covariance between a pair of returns.
correlation of returns.

This will allow us to computet he volatility of returns and the

Applying Lemma 4 to the J* process and conditioning on n jumps, this lemma implies that

E[J%n] = E[min(J",J)n]
= E[J"1yr<y ’n] + JE[L > )]
J— —nb,
= (£757) - v (457 ) o (
and
E[J*n] = E[min(J",.J)%n)

E[J"1(gr<pln] + L2E[L(r> 5[]

eiero (L) i (L5

Note that the corresponding moments for the J? process are:

E[J%n]
E[1%n]

nfy

nd3 + n*03

We now average over all possible realizations of the number of jumps n to get:

e YW

EJY = Y E[J%Yn] = 04,
n=1
BT = Y Bl ] = 6% + 263,
n=1 '
a - e_Ww” a —
EJY = ) ——E[J"[n] = 0o,
n=1 ’
a L ewWn o
ElJ*] = ) ———EJ"),
n=1 ’
B = Y S n,E] % ),
n=1
d,1 7d,2 — € Yw" 2
B IM] = Y ———(nba)(nba) = 26
n=1

nb, — J

)oou(:

)

V1,

nfy — J
N

£).



where we used our assumption that w = 1, which implies that )7, f:fnn =land > 2, efn.“n n? = 2.

The last but one expression uses the fact that the two jumps are uncorrelated, conditional on a given
number of jumps. The last expression computes the expectation of the product of the idiosyncratic jumps
for two different stocks. Note that the correlation between these two idiosyncratic jump processes is zero
if and only if 8; = 0, an assumption we make in our calibration.

The variance of dividend growth of a firm can be computed as follows

Var[Ad) = (1 —p)E[(AdYP)’] + pE[(AP)?] = [(1 — pi) E[AdNP] + pE[AdP])
= (L—p) (3 + ¢50% + o)
i |15+ 0302 + 0% + ELIV] + B + 2B[J°) - 2(E[J) + E[J)]
[ = piprat pilina — B - B
= 20% + 0% + pi(02 + 202 + E[J%) 4+ 2E[J1JY) — p? (04 + 04)?

Similarly, mean dividend growth is given by FE[Ad;] = ug — pi(04 + 04). If 65 = 0, as we assume, mean
dividend growth is simply pg — pifs-

The variance of returns can be derived similarly, with the only added complication that we need to
take into account state transitions from 7 to j that affect the mean return ji,;;.

Varlr] = (1—p)E[(r’P)"] + pEI(rP)’] - [ = p)ElrNP) + piEFP)],

I
= (1-p) Zﬂ-ij:u%ij + ¢goz + oy
j=1

I 1
i | Y migutiy + daoe + og + E[J?) + E[J°] + 2E[J4%) - 2 > i (B[ + E[J%)
j=1 J=1
2

I
— ij,umj—pi(E[Jd]+E[Ja]) ;
j=1
Gri + Go; + 0g; + iS5 + 205 + E[J**] + 2E[JJ°]) — p}(0a + 6a)°,

where )

I I
— 2 g
Cm’ = g pij — 5 Hrig 5
Jj=1 Jj=1

is an additional variance term that comes from state transitions that affect the price-dividend ratio. The
volatility of the stock return is the square root of the variance.
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Finally, the covariance of a pair of returns (r!,r2) in state i is:

Cov[ril, 7‘22] = (1- p,-)E[r-l’NDT?’ND] +piE[r2-1’D7‘i2’D]

3 (2

- [(1 —p) B[] +pz’E[7“,-1’D]] [(1 — ) ElryNP) —I—piE[r?’D]} ,

7

I
= (1-p) Z Tijliysj + Ga0a + 05
j=1

I I
4pi | Y migutiy + a0 + ogiba+ E[TYN I + E[J%) 4+ 2E[J7 T = 2w parij (0 + 0a)
j=1 j=1

2

I I
- Z Tijhnij | — i (00 + 04)% + 2 Z Tijtrig(Oa + 0a),
=1 =1
= i+ G0 + 0gia+ pi(205 + BJ™] + 2B[J1I) = pi (0 + 0a)?,

where we recall that £; is the fraction of the variance of the Gaussian € shock that is common across all
stocks. The correlation between two stocks is the ratio of the covariance to the variance (given symmetry).

B.3 Equity Risk premium

By analogy with the derivations above, we have

Bl = Ze_“’w

——E[JIn] = ..
n=1
Bl = f:e_w“’”(ne )(nfy) = 20,0
- / nl d d) — cVd,
a C - e_w " a
E[J*J]] = Zl — nb.E[J%n]
We also have
mNP = Hmis — V0ci,
mP = pmij — yoem +J¢,
pmi; = alog B+ (o —1)(kG +we; — Kjwe;) — Yhie,

The equity risk premium is —C'ov(m, ), which can be derived similarly to the covariance between two
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returns. In particular:

Covlmi,ri] = (1 —p)Em}" ND]JFPzE[ P ZD]
— (@ = p) E[m"P] + p: E[m]] [(1 ri P14+ piErl]]

= (1—p) Z Tij trijfbmij — 7¢d0’gi
j=1

I
Z T35 Mrig Mmij — ’Yédagi - ’YE[JdJC] ’YE[JGJC + v Z WZJNMJ Z Wzyﬂmzy ed +0 )
7=1 7j=1 7=1

I I
Z Tijtmij + DiY0e Z Tijbrij — Pi(0q + 0q)
j=1 j=1
= (i —10a0% — pi7(2040c + E[J1T) + pPy0.(04+ 0a),

where

I I I
Cmi = Y Tijhrijhimis — | D Tijhtrij > Tijbmis
J=1 J=1 J=1

B.4 Option Pricing in the Disaster State

We condition on the disaster state occurring in the next period, on a transition from state i to state j
and on a known number of jumps n for the jump variables. Later we will average over the possible values
for each. The put option value in this state is:

pPut), = E[MP(K—-RP)lg. go]
= —F [exp (mD + TD) 1k>rD] +KE [exp (mD) 1k>rD]

- Put”nl + Put”n2

We now develop the two terms. For ease of notation, let V,” = Putgnl and Vi = Put”n2
Recall that 7 = rN¥P — J; and rP” = 7 — min(J",.J). Our derivation below exploits the normality of
the following two random variables:

mP = pmj —06n + ¥ Je ~ Nt + ynbe, o5 +7°n67)
ro= Nrj+¢aci77+0'di€_t] NN(NT’] n@Z,O'T)
02 = o2 +nd?, OmD 3 = Omyr = —y¢o’
First term V,
VlD = F [eXp (mD + T‘D) 1k>rD1J7"<l] + F [eXp (mD + T‘D) 1k>rD1J">l]
= F [exp (mD + NP g — JT) 1k>TD1JT'<l] + FE [exp (mD e —i) 1k>T.D1JT'>lj|

D D
= Vii +Vis
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The first term V{7 can be solved as follows:

Vi{ = Elexp(m® +7—J") Lspnlyrey]
E [E{exp (mP +7—J") LipyrsilJ"}| Lireg]
= E[E{exp (m” +7) Lgyyrsi "} exp (=) 1yrey]
= U(L,1,mP, 7F)E [® (¢ + ¢1J ) exp(—J") 1yr<y] by Lemma 1
po—t1  J—tp
V1+ @2~ /nor

_ 5,
where ¢; = év ¢o = ¢1 (k— prj +1b; — 02 — 0,0 5), ta = n(0, — 62), t1 = —¢ita, p = 7%;1;/?”52, and
1 T

= (1, 1;mP, 7)exp(z)® < ;p) by Lemma 2

62
7= "2* —nb,.

Next, we turn to V/5:

Vllz) E [exp (mD + VD — Ji — i) 1k>TD1J7“>lj|

= exp(—J)E [exp (m” +7) Lyt yo7] @ (”g\;#)

J+k— T"+n6i_ 2- mP 7 r
= U(1,1;mP,7) exp(—J)® <_ frd % — Im?, > ) <n9 i) by Lemma 1
OF 57«\/ﬁ
Second term V;”
V¥ = KE[exp(m”) 1;5,0]
KE [exp (m®) 1o, lyrey] + KE [exp (mP) 1opn 1]
= Vil + Ve
The first term V7 can be solved as follows:
Vi = KE [exp (mD) Lpspplyrey]

= KF [E {exp (mD) 1k+Jr>;\JT}1Jr<J]
= KU(1,0;m?,7E [(I) (o + P1J") ].J'r<i] by Lemma 1
= KU(1,0;m” 7)o ( bt St

V14 ¢ne? ' V/ndy

_ 1 _ _ _ _ _—¢$1vndr _
where ¢1 = 7, ¢0 = d1 (k= prj +1b; — 0,0 ;) t2 = nby, 11 = —¢1ty, p = \/ﬁ, and z; = 0.

Because z; = 0, exp(z1) = 1, and we have dropped that term from the expression.

;p> by Lemma 2
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Finally, we turn to Vi5:

Vi3 = KE [exp (m”) 14o,nlrsy]
= KE [exp (m”) Lpgysilirsy]
0, —J
= KB () asor) o (2 )
l“‘k‘—/irj‘i’nei_o-mDi P ner_l
dr/n

= KU(1,0;m”,7)® ( > by Lemma 1

Or

B.5 Option Pricing Absent Bailout Guarantees

Absent bailout options (NB), J% = J", and we obtain substantial simplification to the general formula.
This special case arises as J — +o0. In that case, the second terms of equations (9) and (10) are zero. In
both first terms, the bivariate CDF simplifies to a univariate CDF.

PutDNB = _w(1,1;mP )05 (dﬁB - \/az + (62 + 53)) + KU(1,0;mP,7)® (d)FP)

9n

= —exp (tmj + prj + 502 4 502 + oy +n(y0. — 0; — 0,) + 5n(v202 + 07 + 5?))

x ® (dﬁ-\,@B — \/03 +n(6? + 5%)) + K exp (tmj + 505, + nyde + 5ny?62) @ (d)7)
= exp (nyd. + .5ny262) { =0 (1, 1;m P 1V P) exp (n(—0; — 6,) + .5n(57 + 62))

X ® (dﬁB —\Jo? + (s + 53)) c ke e (d%B)}

with
k — prj +n(0; +0;) — 0pp 5

\/ 02 + né? + nd?

This equation is the counter-part of the Black-Scholes formula in equation (8), except that the mean and
volatility of returns are adjusted for the jumps. Indeed, absent bailout options, log returns are normally
distributed conditional on a given number of jumps n. We note that the expression for d¥? is in terms
of the moments of the risk-neutral distribution of log returns. In particular, the risk-neutral mean is

NB _
NP =

firj = brg = 1(0i + 07) = (=00 7).

Thus the risk-neutral mean of the jump size equals the physical mean (67 = 6; and 6} = 6,), which
follows from the fact that the jump sizes of the J” and the J* processes are independent of those of
aggregate consumption J¢. The risk-neutral variance of log returns is equal to the physical variance, as
usual (o) = o, 07 = 0; and 6; = 6,). The risk-neutral jump intensity is increased from the physical one
as follows: w* = wexp (790 + .57252). To see this, note that the term exp (nvéa + .5n7252), which factors
out of the put price, can be folded into the Poisson weights when we sum over all possible number of
jumps as in equation (11):

0 e~ W™ 5 o o0 e~ W ¥
nzz:l . exp (n(v6e + .5y 50)):;T

We recover the formulae of Backus, Chernov, and Martin (2011).
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Table I: Basket-Index Spreads on Out-f-the-Money Options

69

Financials Non-financials F Minus NF Financials Non-financials F Minus NF
Puts Calls Puts Calls Puts Calls P Minus C Puts Calls Puts Calls Puts Calls P Minus C
Panel I: Delta-matched TTM = 365 Panel II: Share-weighted Strike Matched TT M = 365
Full Sample mean 1.693 0.238 1.106 0.208 0.588 0.030 0.558 2.936 0.990 2.686 2.019 0.250 -1.029 1.279
std 1.891 0.157 0.686 0.094 1.435 0.100 1.506 2.516 0.100 1.076 0.246 1.693 0.194 1.846
min -0.133  -0.437 | -0.122 -0.253 | -1.899 -0.498 -1.732 1.019 0.632 1.265 1.663 -2.031  -1.943 -0.887
max 12.458  0.487 4.128 0.359 9.070 0.440 9.568 15.872 1.273 7.579 2.754 10.168  -0.709 12.111
Pre-Crisis mean 0.810 0.315 0.911 0.249 | -0.098 0.067 -0.165 1.710 0.951 2.259 1.896 -0.549  -0.945 0.396
std 0.197 0.056 0.442 0.052 0.335 0.052 0.326 0.345 0.070 0.587 0.128 0.329 0.085 0.269
min 0.078 2.593 3.265 -0.033 | -1.899  0.942 1.410 1.061 2.322 4.070 1.265 -2.031 0.942 1.943
max 2.269 5.462 8.090 3.090 0.953 2.082 2.201 3.763 5.097 9.651 4.567 0.444 2.082 3.101
Crisis mean 3.792 0.055 1.572 0.111 2.220  -0.057 2.277 5.851 1.082 3.702 2.313 2.149 -1.230 3.379
std 2.393 0.166 0.904 0.100 1.705 0.130 1.791 3.006 0.101 1.274 0.206 2.076 0.230 2.253
min -0.133  -0.437 | -0.122 -0.253 | -0.538 -0.498 -0.740 1.019 0.632 1.776 1.867 | -1.203 -1.943 -0.223
max 12.458  0.370 4.128 0.285 9.070 0.440 9.568 15.872 1.273 7.579 2.754 | 10.168 -0.709 12.111
Panel III: Delta-matched, TT M = 30 Panel IV: Share-weighted Strike Matched, TT M = 30
Full Sample mean 0.302 0.139 0.158 0.116 0.145 0.023 0.122 0.683 0.430 0.576 0.559 0.107  -0.129 0.236
std 0.334 0.064 0.136 0.054 0.274 0.085 0.302 0.612 0.156 0.251 0.156 0.414 0.076 0.405
min -0.150  -0.312 | -0.831 -0.202 | -0.415 -0.433 -0.424 0.170 -0.010 | -0.529  0.241 -0.385  -0.613 -0.207
max 2.458 0.272 0.651 0.240 1.865 0.324 2.031 3.977 1.081 1.976 1.308 2.663 0.204 2.777
Pre-Crisis mean 0.170 0.155 0.129 0.105 0.042 0.051 -0.009 0.400 0.352 0.476 0.483 -0.076  -0.131 0.055
std 0.063 0.054 0.110 0.052 0.119 0.072 0.095 0.074 0.047 0.137 0.070 0.118 0.071 0.090
min -0.072  -0.227 | -0.831 -0.103 | -0.316  -0.347 -0.424 0.170 0.535 0.948 -0.529 | -0.385 0.236 0.636
max 0.376 0.270 0.511 0.240 0.996 0.324 0.869 0.757 1.710 2.257 0.947 0.860 0.954 1.384
Crisis Sample  mean 0.617 0.100 0.228 0.144 0.389  -0.044 0.434 1.360 0.618 0.814 0.743 0.546 -0.126 0.671
std 0.476 0.071 0.163 0.048 0.367 0.077 0.386 0.782 0.165 0.297 0.151 0.527 0.085 0.518
min -0.150 -0.312 | -0.139 -0.202 | -0.415 -0.433 -0.185 0.245 0.159 0.359 0.361 -0.181  -0.613 -0.014
max 2.458 0.272 0.651 0.238 1.865 0.253 2.031 3.977 1.081 1.976 1.308 2.663 0.204 2.777

This table reports summary statistics for the basket-index spread in the cost of insurance per dollar insured. Numbers reported are in cents per dollar
of the underlying. The full sample covers 1/2003-6/2009. The pre-crisis sample covers 1/2003-7/2007. The crisis sample covers 8/2007-6/2009. |A| is
20. In the top panel, Time to maturity is 365 days. In Panel I, we choose the index option with the same A as the individual options. In Panel II, we
choose the index option with the same share-weighted strike price as the basket.



Table II: Summary Stats for Spreads on Options sorted by Moneyness

Financials Non-financials F Minus NF Financials Non-financials F Minus NF
Puts Calls| Puts Calls| Puts Calls P Minus C Puts Calls| Puts Calls Puts Calls P Minus C
|A] =20 |A| =30

Full mean | 1.693 0.238 | 1.106 0.208 | 0.588 0.030 0.558 2.133 0.459 | 1.514 0.421 | 0.621 0.039 0.582
std 1.891 0.157 | 0.686 0.094 | 1.435 0.100 1.506 2.030 0.289 | 0.761 0.155| 1.507 0.201 1.646
min -0.133 -0.437|-0.122 -0.253 | -1.899 -0.498 -1.732 0.227 -1.036 | -0.023 -0.285 | -2.214 -1.186 -1.839
max | 12.458 0.487 | 4.128 0.359 | 9.070 0.440 9.568 14.090 0.843 | 5.345 0.683 | 11.002 0.789 11.691

Pre-Crisis mean | 0.810 0.315| 0.911 0.249 | -0.098 0.067 -0.165 1.193 0.593 | 1.292 0.489| -0.096 0.104 -0.201
std 0.197 0.056 | 0.442 0.052 | 0.335 0.052 0.326 0.293 0.105| 0.480 0.084 | 0.338 0.106 0.290
min 0.078 2.593 | 3.265 -0.033 |-1.899 0.942 1.410 0.227 0.101 | -0.023 0.269 | -2.214 -0.442 -1.839
max 2.269 5.462 | 8.090 3.090 | 0.953 2.082 2.201 2.454 0.843 | 3.762 0.683 | 1.483 0.342 1.308

Crisis mean | 3.792 0.055| 1.572 0.111| 2.220 -0.057 2.277 4.370 0.142 | 2.042 0.258 | 2.328 -0.116 2.444
std 2.393 0.166 | 0.904 0.100 | 1.705 0.130 1.791 2.573 0.336 | 1.006 0.165| 1.807 0.277 2.007
min -0.133 -0.437|-0.122 -0.253 | -0.538 -0.498 -0.740 0.479 -1.036 | 0.307 -0.285 | -0.520 -1.186 -0.577
max | 12.458 0.370 | 4.128 0.285 | 9.070 0.440 9.568 14.090 0.753 | 5.345 0.577 | 11.002 0.789 11.691

|A| =40 |A] =50

Full mean | 2.581 0.763| 1.968 0.702 | 0.615 0.062 0.553 3.083 1.161| 2.487 1.079| 0.599 0.083 0.516
std 2.085 0.452| 0.789 0.229 | 1.558 0.350 1.794 2.131 0.649 | 0.836 0.344 | 1.619 0.546 1.969
min 0.522 -1.743 | 0.029 -0.241 |-2.825 -2.154 -2.213 0.486 -2.770 | 0.348 -0.322 | -4.086 -3.579 -2.737
max | 14.287 1.406 | 5.450 1.303 | 9.231 0.927 11.385 15.589 2.178 | 6.021 2.254 | 9.959 1.300 13.513

Pre-Crisis mean | 1.620 0.957 | 1.740 0.791|-0.116 0.167 -0.283 2.114 1403 | 2.262 1.184 | -0.145 0.221 -0.365
std 0.305 0.175| 0.519 0.152 | 0.441 0.191 0.378 0.328 0.278 | 0.586 0.266 | 0.514 0.277 0.394
min 0.522  0.093 | 0.029 0.367 |-2.825 -0.908 -2.213 0.586 0.375| 0.348 0.173 | -4.086 -1.349 -2.737
max 2.955 1.406 | 4.771 1.303 | 2.033 0.584 1.705 4.015 2.178 | 5.895 2.254 | 2.290 1.187 1.734

Crisis mean | 4.867 0.303| 2.511 0.490 | 2.356 -0.188 2.544 5.387 0.586 | 3.019 0.830 | 2.368 -0.244 2.613
std 2.655 0.563 | 1.022 0.243 | 1.855 0.489 2.215 2.748 0.877| 1.069 0.380 | 1.946 0.820 2.546
min 0.643 -1.743| 0.325 -0.241|-0.734 -2.154 -0.469 0.486 -2.770 | 0.719 -0.322 | -1.287 -3.579 -1.246
max | 14.287 1.294 | 5.450 0.984 | 9.231 0.927 11.385 15.589 2.084 | 6.021 1.594 | 9.959 1.300 13.513

This table reports summary statistics for the basket-index spread in the cost of insurance per dollar insured. Numbers reported are in cents per dollar
insured. The full sample covers 1/2003-6/2009. The pre-crisis sample covers 1/2003-7/2007. The crisis sample covers 8/2007-6/2009. We choose the
index option with the same A as the individual options.
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Table III: Percentage Basket-Index Spreads on Options with Varying Moneyness

Financials Non-financials
Puts Calls Puts Calls
|Al =20
Full Sample mean | 29.69%  18.41% | 25.23%  13.70%
std 9.38%  11.95% 7.45% 7.09%

max 80.53%  51.73% | 64.48%  27.34%
Pre-Crisis Sample  mean | 26.67% 24.68% | 26.04% 16.91%

std 5.78% 6.80% 7.47% 4.94%
max 43.71%  51.73% | 64.48% 0.36%
Crisis Sample mean | 36.86% 3.47% | 23.28% 6.05%

std 12.04% 7.46% 7.02% 5.38%
max 80.53%  20.97% | 44.97%  16.81%

A =30
Full Sample mean | 28.22%  19.29% | 24.16% 14.97%
std 7.66% 12.03% 5.73% 6.80%

max 68.84%  48.15% | 54.68%  28.54%
Pre-Crisis Sample mean | 26.84% 25.47% | 25.19% 18.18%

std 6.19% 7.09% 5.50% 4.46%
max 44.00%  48.15% | 54.68% 0.68%
Crisis Sample mean | 31.50% 4.41% | 21.67% 7.25%
std 9.61% 7.62% 5.48% 4.98%
max 68.84%  22.08% | 37.75%  18.57%
|A| = 40
Full Sample mean | 27.99%  19.72% | 24.27%  15.35%
std 717% 11.91% 5.23% 6.46%

max 57.82%  51.69% | 50.85%  29.28%
Pre-Crisis Sample mean | 27.87%  25.69% | 25.67%  18.29%

std 6.78% 7.46% 4.96% 4.54%
max 47.14%  51.69% | 50.85% 1.30%
Crisis Sample mean | 28.22% 5.39% | 20.89% 8.29%
std 8.04% 7.57% 4.23% 4.68%
max 57.82%  23.14% | 33.41%  19.69%
|A| =50
Full Sample mean | 28.17%  19.49% | 24.73%  15.52%
std 7.26% 11.35% 5.42% 6.41%

max 51.71%  55.53% | 51.46%  29.75%
Pre-Crisis Sample mean | 29.02% 24.93% | 26.49% 18.21%

std 7.13% 7.62% 5.03% 4.92%
max 47.47%  55.53% | 51.46% 2.24%
Crisis Sample mean | 26.11% 6.43% | 20.48% 9.07%
std 7.19% 7.53% 3.69% 4.73%

max 51.71%  24.35% | 32.70%  21.26%

This table reports summary statistics for the basket-index spread. Numbers reported are in percent of the cost
of the index put. The full sample covers 1/2003-6/2009. The pre-crisis sample covers 1/2003-7/2007. The crisis
sample covers 8/2007-6/2009. |A| is 20. We choose the index option with the same A as the individual options.
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Table IV: Option Prices in Model and Data

The table reports option prices and implied volatility for the financial sector index, for its constituents, and pairwise correlations between
the stocks in the financial sector index.

Puts Calls

Basket Index Spread Basket Index Spread
Panel I: Data
Option Prices

pre-crisis 4.0 3.2 0.8 1.6 1.3 0.3

crisis 13.7 9.9 3.8 2.4 2.3 0.1
Implied Vol

pre-crisis 25.9 21.7 4.2 19.8 14.9 4.9

crisis 59.5 48.5 11.0 42.8 37.8 5.0

Panel II: Model with Bailout
Option Prices

pre-crisis 4.3 4.1 0.3 1.5 1.2 0.4
crisis 13.7 9.9 3.8 2.5 2.3 0.2
pre-crisis 34.1 31.2 2.9 174 11.0 6.5
crisis 61.3 46.7 14.6 35.0 24.1 10.9

Panel III: Model without Bailout
Option Prices

pre-crisis 3.8 3.4 0.4 1.5 1.6 -0.1

crisis 13.7 9.9 3.8 2.6 2.3 0.3
Implied Vol

pre-crisis 32.2 29.2 3.0 17.7 18.2 -0.5

crisis 62.9 48.6 14.3 61.0 27.7 33.3

Table V: Return Moments in Model and Data

The table reports realized volatility for the financial sector index, for its constituents, and pairwise correlations between the stocks in
the financial sector index. The crisis numbers for the model represent the unconditional moment in state 2, taking disasters into account

probabilistically. The number in italic for the model report the moments in state 2 of the model conditional on a disaster realization.

Index Individual Stocks
Volatility ~ Volatility Correlations
Panel I: Data

pre-crisis 11.9 18.1 44.8
crisis 43.8 72.9 57.5
Panel II: Model with Bailout
pre-crisis 19.2 26.7 42.3
crisis 31.9 44.5 51.1
46.4 69.5 40.7

Panel III: Model without Bailout
pre-crisis 18.7 26.0 43.8
crisis 28.7 44.4 35.8
42.8 76.7 26.7
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Table VI: Option Prices in Model and Data in Non-Financial Sector

The table reports option prices and implied volatility for the non-financial sector index, for its constituents, and pairwise correlations

between the stocks in the financial sector index.

Puts Calls
Basket Index Spread Basket Index Spread
Panel I: Data
Option Prices
pre-crisis 4.3 3.4 0.9 1.8 1.5 0.3
crisis 7.9 6.3 1.6 2.2 2.0 0.1
Implied Vol
pre-crisis 28.6 21.7 6.9 23.2 15.9 7.3
crisis 41.7 34.2 7.5 32.1 24.3 7.8
Panel II: Model without Bailout
Option Prices
pre-crisis 2.8 2.3 0.5 1.5 0.9 0.6
crisis 7.9 6.3 1.6 2.0 1.6 0.4
Implied Vol
pre-crisis 27.1 22.4 4.7 17.0 8.4 8.6
crisis 42.6 35.6 7.0 25.1 20.0 5.1

Table VII: Return Moments in Model and Data in Non-financial Sector

The table reports realized volatility for the financial sector index, for its constituents, and pairwise correlations between the stocks in

the non-financial sector index. The crisis numbers for the model represent the unconditional moment in state 2, taking disasters into

account probabilistically. The number in italic for the model report the moments in state 2 of the model conditional on a disaster

realization.

Index Individual Stocks
Volatility ~ Volatility Correlations
Panel I: Data

pre-crisis 12.2 21.5 33.6
crisis 25.1 35.1 57.1

Panel II: Model without Bailout
pre-crisis 12.7 20.7 33.2
crisis 19.9 27.7 48.2
28.7 39.5 50.1
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Table VIII: Liquidity in Puts

0<]|A[< 20 20 < [A[ < 50 50 < |A[ < 80 80 < [A[ < 100
Spr. () Spr. (%) Vol O | Spr. (3) Spr. (%) Vol. O.I | Spr. (3) Spr. (%) Vol O | Spr. (3) Spr. (%) Vol O.L
Pre-Crisis Sample 10 Days < TTM < 90 Days
S&P 500 0.450 80.5% 1072 15783 1.295 9.4% 2219 16594 1.821 5.8% 693 6807 1.959 3.7% 93 3138
All Sector SPDRs 0.133 150.5% 80 3205 0.141 35.0% 867 7606 0.167 13.7% 269 3221 0.239 7.9% 26 339
Financial SPDR 0.096 142.3% 187 10494 0.109 30.9% 1791 19708 0.125 12.4% 502 7907 0.182 7.0% 44 689
Indiv. Stocks 0.088 106.3% 169 5447 0.106 13.2% 836 9225 0.152 6.2% 473 5990 0.230 3.1% 76 1550
Fin. Indiv. Stocks 0.095 103.5% 142 4534 0.116 13.4% 691 7667 0.169 6.4% 380 4888 0.254 3.3% 65 1288
90 Days < TTM < 180 Days
S&P 500 0.701 56.3% 373 18107 1.719 6.9% 1242 22052 1.982 3.4% 198 5962 2.076 1.5% 14 1949
All Sector SPDRs 0.141 96.0% 21 1132 0.156 19.0% 163 3057 0.198 8.7% 40 1258 0.273 6.3% 3 118
Financial SPDR 0.103 71.0% 103 4307 0.119 16.8% 452 13713 0.142 7.6% 96 3891 0.182 4.9% 16 347
Indiv. Stocks 0.094 72.4% 66 4326 0.133 8.1% 278 7760 0.196 4.3% 123 4622 0.242 2.3% 21 1138
Fin. Indiv. Stocks 0.103 68.4% 56 3445 0.147 8.3% 229 6509 0.216 4.4% 103 3565 0.271 2.5% 18 807
180 Days < TTM < 365 Days
S&P 500 1.067 33.7% 237 12015 2.093 5.5% 400 10895 2.185 2.6% 52 2837 2.174 1.1% 4 1359
All Sector SPDRs 0.130 60.6% 9 857 0.156 12.8% 45 1290 0.203 6.8% 10 593 0.273 4.7% 2 129
Financial SPDR 0.095 47.5% 24 2448 0.105 10.8% 287 7823 0.139 5.6% 53 3313 0.188 4.0% 4 128
Indiv. Stocks 0.103 55.3% 52 4432 0.156 6.8% 170 6880 0.224 3.8% 65 4040 0.255 2.1% 15 120855
Fin. Indiv. Stocks 0.112 49.8% 48 3782 0.174 7.0% 130 5582 0.247 3.9% 50 2972 0.278 2.2% 11 756
Crisis Sample 10 Days < TTM < 90 Days
S&P 500 1.120 61.7% 1369 14797 2.663 9.4% 2652 18992 2.974 4.5% 871 14305 3.033 2.4% 120 9284
All Sector SPDRs 0.087 59.4% 667 8801 0.130 11.8% 2849 20540 0.226 6.9% 963 12846 0.388 4.8% 72 3724
Financial SPDR 0.042 24.7% 4422 52042 0.054 6.5% 12983 88367 0.107 4.4% 4336 56684 0.206 3.7% 376 19916
Indiv. Stocks 0.108 55.5% 344 5590 0.153 7.9% 1170 9400 0.244 4.5% 529 6857 0.481 2.9% 87 2404
Fin. Indiv. Stocks 0.126 56.2% 296 4390 0.181 8.1% 1041 8047 0.288 4.6% 452 5741 0.516 3.0% 83 2435
90 Days < TTM < 180 Days
S&P 500 1.723 35.2% 568 16641 3.003 6.2% 1147 18511 3.179 2.8% 212 12697 3.255 1.3% 25 7625
All Sector SPDRs 0.112 31.1% 209 4218 0.184 8.1% 527 8681 0.286 4.9% 162 5310 0.407 3.6% 17 1598
Financial SPDR 0.055 18.7% 1421 24285 0.079 5.3% 3012 49466 0.159 4.0% 1008 28769 0.227 3.0% 129 8338
Indiv. Stocks 0.133 38.2% 119 4640 0.214 5.5% 339 7705 0.318 3.2% 115 4908 0.492 2.2% 15 1593
Fin. Indiv. Stocks 0.154 37.9% 106 3405 0.253 5.6% 301 6235 0.376 3.3% 94 4085 0.536 2.2% 16 1637
180 Days < TTM < 365 Days
S&P 500 2.402 22.3% 272 12355 3.409 4.7% 507 13293 3.538 2.1% 60 7814 3.593 1.1% 8 5226
All Sector SPDRs 0.177 22.1% 57 1693 0.300 7.8% 169 3428 0.410 4.8% 50 3257 0.474 3.3% 44 1818
Financial SPDR 0.057 12.9% 238 7318 0.089 4.5% 1049 19391 0.170 3.5% 300 13661 0.219 2.4% 121 6042
Indiv. Stocks 0.186 30.4% 69 2713 0.294 5.5% 173 5372 0.423 3.1% 55 3653 0.623 2.2% 9 1269
Fin. Indiv. Stocks 0.208 30.6% 54 1984 0.338 5.8% 162 4654 0.474 3.3% 47 3529 0.630 2.3% 9 1459

The full sample covers 1/2003-6/2009. The pre-crisis sample covers 1/2003-7/2007. The crisis sample covers 8/2007-6/2009. The stats reported for
individual and sector options are value-weighted.
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Table IX: Liquidity in Calls

0<|A[< 20 20< [A[< 50 50 < |[A] < 80 80 < [A[< 100
Spr. (§) Spr. (%) Vol O.I | Spr. (3) Spr. (%) Vol. OI | Spr. (8) Spr. (%) Vol Ol | Spr. (8) Spr. (%) Vol 0.1
Pre-Crisis Sample 10 Days < TTM < 90 Days
S&P 500 0.405 96.9% 1002 11990 1.204 10.3% 1598 12885 1.836 5.3% 930 11351 2.006 1.9% 71 3476
All Sector SPDRs 0.123 169.3% 23 745 0.135 42.3% 262 2970 0.160 14.3% 187 2790 0.236 7.4% 16 931
Financial SPDR 0.081 177.4% 22 1497 0.107 38.2% 512 6477 0.129 13.4% 311 6428 0.183 6.7% 28 1995
Indiv. Stocks 0.077 140.7% 203 5916 0.100 14.6% 1430 14839 0.144 6.1% 928 11702 0.229 3.1% 186 3840
Fin. Indiv. Stocks 0.083 138.1% 179 4926 0.110 15.1% 1145 11640 0.160 6.2% 738 9123 0.252 3.3% 142 3189
90 Days < TTM < 180 Days
S&P 500 0.592 85.7% 301 10160 1.662 8.2% 703 17315 1.983 3.0% 364 13038 2.049 1.1% 22 3148
All Sector SPDRs 0.134 122.8% 8 434 0.154 24.1% 59 1481 0.195 9.1% 50 1365 0.282 5.9% 4 306
Financial SPDR 0.085 94.5% 12 1012 0.120 22.2% 134 4566 0.148 8.1% 109 3734 0.214 5.0% 7 748
Indiv. Stocks 0.082 112.2% 77 4798 0.122 9.5% 512 11756 0.187 4.5% 262 8052 0.251 2.4% 34 2248
Fin. Indiv. Stocks 0.089 111.2% 60 3468 0.136 9.9% 395 8320 0.207 4.6% 187 5686 0.279 2.5% 26 1567
180 Days < TTM < 365 Days
S&P 500 0.872 50.0% 113 6705 2.001 6.9% 249 10021 2.198 2.3% 106 7283 2.224 0.9% 11 1200
Sector SPDRs 0.121 89.4% 3 455 0.151 17.2% 23 1070 0.204 7.0% 19 825 0.270 4.8% 2 258
Financial SPDR 0.088 64.8% 7 493 0.108 15.1% 48 2362 0.139 5.8% 45 2548 0.198 3.7% 3 497
Indiv. Stocks 0.090 93.6% 51 5189 0.143 8.5% 259 9021 0.215 4.1% 147 6730 0.271 2.2% 23 2363
Fin. Indiv. Stocks 0.096 96.1% 40 3962 0.158 8.9% 207 6783 0.238 4.3% 109 5349 0.292 2.3% 16 1877
Crisis Sample 10 Days < TTM < 90 Days
S&P 500 0.705 118.6% 580 10797 2.497 11.4% 1857 16012 2.968 4.3% 1047 9846 3.047 1.8% 50 2157
All Sector SPDRs 0.080 103.7% 390 7908 0.121 14.1% 3386 19642 0.211 7.2% 1552 11705 0.350 4.6% 98 2581
Financial SPDR 0.037 47.7% 3007 52259 0.050 8.5% 17312 93957 0.097 4.8% 8020 56259 0.178 4.0% 628 19025
Indiv. Stocks 0.094 96.6% 341 6754 0.141 9.5% 1623 11596 0.230 4.8% 838 7407 0.446 3.1% 103 2423
Fin. Indiv. Stocks 0.110 93.6% 293 5739 0.169 10.0% 1362 9587 0.263 4.9% 754 6157 0.490 3.3% 104 1742
90 Days < TTM < 180 Days
S&P 500 1.067 97.4% 183 10138 2.913 8.8% 637 12846 3.167 3.0% 326 4394 3.219 1.3% 13 912
All Sector SPDRs 0.099 81.2% 109 4741 0.168 10.8% 480 7791 0.278 5.6% 219 3878 0.394 3.6% 19 702
Financial SPDR 0.051 50.3% 749 25321 0.077 8.2% 2916 42929 0.139 4.4% 1193 18780 0.219 3.5% 107 3391
Indiv. Stocks 0.118 75.5% 100 5023 0.197 7.5% 460 9358 0.299 3.9% 216 5972 0.496 2.5% 25 1818
Fin. Indiv. Stocks 0.136 73.9% 93 4523 0.236 7.9% 375 7207 0.350 4.1% 181 4543 0.537 2.7% 19 1269
180 Days < TTM < 365 Days
S&P 500 1.625 66.6% 62 8211 3.420 7.7% 237 8752 3.500 2.5% 126 4713 3.485 1.1% 5 510
All Sector SPDRs 0.151 63.6% 45 2964 0.280 11.6% 162 4348 0.411 5.8% 77 2034 0.507 3.8% 6 431
Financial SPDR 0.054 35.2% 154 8949 0.088 7.5% 836 18346 0.151 4.1% 480 11201 0.207 3.0% 18 1960
Indiv. Stocks 0.159 62.1% 57 4033 0.274 8.0% 210 5991 0.395 4.2% 118 3886 0.609 2.8% 14 891
Fin. Indiv. Stocks 0.170 63.9% 54 4381 0.311 8.6% 190 5345 0.451 4.5% 103 3124 0.630 3.1% 13 702

The full sample covers 1/2003-6/2009. The pre-crisis sample covers 1/2003-7/2007. The crisis sample covers 8/2007-6/2009. The stats reported for
individual and sector options are value-weighted.



Table X: Top 40 Holdings of the Financial Sector Index XLF

12/30/2010 07/30/2007
Name Weighting Name Weighting

1 JPMorgan Chase & Co. 9.01 CITIGROUP INC 11.1
2 Wells Fargo & Co. 8.86 BANK OF AMERICA CORP 10.14
3 Citigroup Inc. 7.54 AMERICAN INTERNATIONAL GROUP 1 8.02
4 BERKSHIRE HATHAWAY B 7.52 JPMORGAN CHASE & Co 7.25
5 Bank of America Corp. 7.3 WELLS FARGO & Co NEW 5.44
6 Goldman Sachs Group Inc. 4.66 WACHOVIA CORP 2ND NEW 4.35
7 U.S. BANCORP 2.82 GOLDMAN SACHS GROUP INC 3.71
8 American Express Co. 2.44 AMERICAN EXPRESS CO 3.35
9 MORGAN STANLEY 2.25 MORGAN STANLEY DEAN WITTER & C 3.25
10 MetLife Inc. 2.21 MERRILL LYNCH & Co INC 3.11
11 Bank of New York Mellon Corp. 2.04 FEDERAL NATIONAL MORTGAGE ASSN 2.81
12 | PNC Financial Services Group Inc. 1.75 U S BANCORP DEL 2.51
13 Simon Property Group Inc. 1.6 BANK OF NEW YORK MELLON CORP 2.32
14 Prudential Financial Inc. 1.56 METLIFE INC 2.15
15 AFLAC Inc. 1.45 PRUDENTIAL FINANCIAL INC 2

16 Travelers Cos. Inc. 1.39 FEDERAL HOME LOAN MORTGAGE COR 1.83
17 State Street Corp. 1.27 TRAVELERS COMPANIES INC 1.63
18 CME Group Inc. Cl A 1.18 WASHINGTON MUTUAL INC 1.61
19 ACE Ltd. 1.15 LEHMAN BROTHERS HOLDINGS INC 1.59
20 Capital One Financial Corp. 1.06 ALLSTATE CORP 1.56
21 BB&T Corp. 1 C M E GROUP INC 1.46
22 Chubb Corp. 0.99 CAPITAL ONE FINANCIAL CORP 1.41
23 Allstate Corp. 0.93 HARTFORD FINANCIAL SVCS GROUP 1.4

24 Charles Schwab Corp. 0.93 SUNTRUST BANKS INC 1.35
25 T. Rowe Price Group Inc. 0.89 STATE STREET CORP 1.28
26 Franklin Resources Inc. 0.87 AFLACINC 1.23
27 AON Corp. 0.82 P N C FINANCIAL SERVICES GRP I 1.11
28 EQUITY RESIDENTIAL 0.81 REGIONS FINANCIAL CORP NEW 1.02
29 Marsh & McLennan Cos. 0.81 LOEWS CORP 1.02
30 SunTrust Banks Inc. 0.8 FRANKLIN RESOURCES INC 1.01
31 Ameriprise Financial Inc. 0.78 SCHWAB CHARLES CORP NEW 0.98
32 PUBLIC STORAGE 0.77 B B & T CORP 0.98
33 Vornado Realty Trust 0.74 FIFTH THIRD BANCORP 0.98
34 Northern Trust Corp. 0.73 CHUBB CORP 0.97
35 HCP Inc. 0.73 S L M CORP 0.97
36 Progressive Corp. 0.71 SIMON PROPERTY GROUP INC NEW 0.93
37 Loews Corp. 0.67 ACE LTD 0.91
38 Boston Properties Inc. 0.66 NATIONAL CITY CORP 0.82
39 Host Hotels & Resorts Inc. 0.64 COUNTRYWIDE FINANCIAL CORP 0.81
40 FIFTH THIRD BANCORP 0.64 LINCOLN NATIONAL CORP IN 0.79

This table reports the XLF weights on 12/30/2010 and 07/30/2007. On 12/30/2010, there were 81 companies in
XLF; on 07/30/2007, there were 92 companies. This table reports the relative market capitalizations of the top 40
holdings of the index.
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Figure 1: Dollar Value of the Equity Bailout Guarantee for the Financial Sector

The dashed (full) line shows the dollar value of the equity bailout guarantee inferred from the basket-index spreads for puts. |A] is 20.
Time to maturity is 365 days. We choose the index options with the same A as the individual options.

Financials——Puts

35 T T
= = = Index
Basket
30l Spread
25

N
o
T

=
o
T

cents per dollar insured
P
a
T

~a -
R N L T

o A S0 B L NN I R 1 ] | 1 gt et

-5 L L I I
10/11/02 02/23/04 07/07/05 11/19/06 04/02/08 08/15/09

Figure 2: Cost Per Dollar Insured Inferred from Puts - Financial Sector

The dashed (full) line shows the cost per dollar insured for the index Puti’;giﬂ” (basket, Puti"éfﬁft), The dotted line plots their difference.

|A] is 20. Time to maturity is 365 days. We choose the index option with the same A as the individual options.
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Financials——Calls
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Figure 3: Cost Per Dollar Insured Inferred from Calls - Financial Sector

The dashed (full) line shows the cost per dollar insured for the index Calliﬁf?’ (basket, Callzgf’}ﬁt), The dotted line plots their difference.
|A] is 20. Time to maturity is 365 days. We choose the index option with the same A as the individual options.
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Figure 4: Basket-Index Spread in Cost Per Dollar Insured Inferred from Puts

The dashed (full) line shows the difference in the cost per dollar insured for the index Putlc’g,f’ge’f - Putfféff‘i“ for financials (non-financials).

The dotted line plots their difference. |A] is 20. Time to maturity is 365 days. We choose the index option with the same A as the
individual options.
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Figure 5: Realized Equity Return Correlations

The dashed (full) line shows the average pairwise correlations within the financial sector (non-financial sectors). Daily pairwise conditional
correlations for stocks are estimated using the exponential smoother with smoothing parameter 0.95. Pairwise correlations within the
financial sector are then averaged each day, weighted by the pairs’ combined market equity. To address stocks’ entry into and exit from
the S&P 500 index during the sample period, a pair’s correlation is only included in the average on a given day if both stocks were
members of the index that day. To remain comparable to the average pairwise correlation among financial stocks, the non-financials
average correlation reflects only correlations between pairs of stocks within the same sector, omitting cross-sector correlations from the
average.
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Figure 6: Implied minus Realized Vol Inferred from Puts

The figure shows the implied minus realized volatility difference for financial (dashed line) and non-financial (solid line) S&P sector
indices. Realized volatilities for each sector are defined as daily conditional volatilities and are estimated by exponential smoothing
with smoothing parameter 0.95. For non-financials, the daily volatility on day ¢ is calculated as the weighted average volatility across
non-financial sectors that day with weights based on the total market value of stocks within sectors. Daily implied volatilities are based
on options with |A] of 20 and time to maturity of 365 days, and the non-financials number represents a value-weighted average across
sectors.
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Figure 7: The Put Spread during the Financial Crisis

The dashed (solid) line shows the difference in the cost per dollar insured for the index Putzgf]fft —Puti’éff%z for financials (non-financials).
The bottom line plots the difference.|A| is 20. Time to maturity is 365 days.
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